(git:e5b1968)
Loading...
Searching...
No Matches
qs_ks_methods.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
9!> \brief routines that build the Kohn-Sham matrix (i.e calculate the coulomb
10!> and xc parts
11!> \author Fawzi Mohamed
12!> \par History
13!> - 05.2002 moved from qs_scf (see there the history) [fawzi]
14!> - JGH [30.08.02] multi-grid arrays independent from density and potential
15!> - 10.2002 introduced pools, uses updated rho as input,
16!> removed most temporary variables, renamed may vars,
17!> began conversion to LSD [fawzi]
18!> - 10.2004 moved calculate_w_matrix here [Joost VandeVondele]
19!> introduced energy derivative wrt MOs [Joost VandeVondele]
20!> - SCCS implementation (16.10.2013,MK)
21! **************************************************************************************************
32 USE admm_types, ONLY: admm_type,&
34 USE cell_types, ONLY: cell_type
36 USE cp_dbcsr_api, ONLY: &
38 dbcsr_p_type, dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
39 dbcsr_type_symmetric
43 USE cp_ddapc, ONLY: qs_ks_ddapc
44 USE cp_fm_types, ONLY: cp_fm_type
48 USE cp_output_handling, ONLY: cp_p_file,&
50 USE dft_plus_u, ONLY: plus_u
53 USE hfx_admm_utils, ONLY: hfx_admm_init,&
56 USE input_constants, ONLY: do_ppl_grid,&
65 USE kinds, ONLY: default_string_length,&
66 dp
67 USE kpoint_types, ONLY: get_kpoint_info,&
73 USE mathlib, ONLY: abnormal_value
75 USE pw_env_types, ONLY: pw_env_get,&
77 USE pw_methods, ONLY: pw_axpy,&
78 pw_copy,&
81 pw_scale,&
88 USE pw_types, ONLY: pw_c1d_gs_type,&
105 USE qs_integrate_potential, ONLY: integrate_ppl_rspace,&
106 integrate_rho_nlcc,&
107 integrate_v_core_rspace
111 USE qs_ks_atom, ONLY: update_ks_atom
114 USE qs_ks_types, ONLY: qs_ks_env_type,&
116 USE qs_ks_utils, ONLY: &
121 USE qs_mo_types, ONLY: get_mo_set,&
125 USE qs_rho_types, ONLY: qs_rho_get,&
127 USE qs_sccs, ONLY: sccs
129 USE qs_vxc, ONLY: qs_vxc_create
137 USE virial_types, ONLY: virial_type
139#include "./base/base_uses.f90"
140
141 IMPLICIT NONE
142
143 PRIVATE
144
145 LOGICAL, PARAMETER :: debug_this_module = .true.
146 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_ks_methods'
147
150
151CONTAINS
152
153! **************************************************************************************************
154!> \brief routine where the real calculations are made: the
155!> KS matrix is calculated
156!> \param qs_env the qs_env to update
157!> \param calculate_forces if true calculate the quantities needed
158!> to calculate the forces. Defaults to false.
159!> \param just_energy if true updates the energies but not the
160!> ks matrix. Defaults to false
161!> \param print_active ...
162!> \param ext_ks_matrix ...
163!> \par History
164!> 06.2002 moved from qs_scf to qs_ks_methods, use of ks_env
165!> new did_change scheme [fawzi]
166!> 10.2002 introduced pools, uses updated rho as input, LSD [fawzi]
167!> 10.2004 build_kohn_sham matrix now also computes the derivatives
168!> of the total energy wrt to the MO coefs, if instructed to
169!> do so. This appears useful for orbital dependent functionals
170!> where the KS matrix alone (however this might be defined)
171!> does not contain the info to construct this derivative.
172!> \author Matthias Krack
173!> \note
174!> make rho, energy and qs_charges optional, defaulting
175!> to qs_env components?
176! **************************************************************************************************
177 SUBROUTINE qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, &
178 print_active, ext_ks_matrix)
179 TYPE(qs_environment_type), POINTER :: qs_env
180 LOGICAL, INTENT(in) :: calculate_forces, just_energy
181 LOGICAL, INTENT(IN), OPTIONAL :: print_active
182 TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL, &
183 POINTER :: ext_ks_matrix
184
185 CHARACTER(LEN=*), PARAMETER :: routinen = 'qs_ks_build_kohn_sham_matrix'
186
187 CHARACTER(len=default_string_length) :: name
188 INTEGER :: handle, iatom, img, ispin, nimages, &
189 nspins
190 LOGICAL :: do_adiabatic_rescaling, do_ddapc, do_hfx, do_ppl, dokp, gapw, gapw_xc, &
191 hfx_treat_lsd_in_core, just_energy_xc, lrigpw, my_print, rigpw, use_virial
192 REAL(kind=dp) :: ecore_ppl, edisp, ee_ener, ekin_mol, &
193 mulliken_order_p, vscale
194 REAL(kind=dp), DIMENSION(3, 3) :: h_stress, pv_loc
195 TYPE(admm_type), POINTER :: admm_env
196 TYPE(cdft_control_type), POINTER :: cdft_control
197 TYPE(cell_type), POINTER :: cell
198 TYPE(cp_logger_type), POINTER :: logger
199 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ksmat, matrix_vxc, mo_derivs
200 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: ks_matrix, ks_matrix_im, matrix_h, &
201 matrix_h_im, matrix_s, my_rho, rho_ao
202 TYPE(dft_control_type), POINTER :: dft_control
203 TYPE(ecoul_1center_type), DIMENSION(:), POINTER :: ecoul_1c
204 TYPE(harris_type), POINTER :: harris_env
205 TYPE(local_rho_type), POINTER :: local_rho_set
206 TYPE(lri_density_type), POINTER :: lri_density
207 TYPE(lri_environment_type), POINTER :: lri_env
208 TYPE(lri_kind_type), DIMENSION(:), POINTER :: lri_v_int
209 TYPE(mp_para_env_type), POINTER :: para_env
210 TYPE(pw_c1d_gs_type) :: rho_tot_gspace, v_hartree_gspace
211 TYPE(pw_c1d_gs_type), POINTER :: rho_core
212 TYPE(pw_env_type), POINTER :: pw_env
213 TYPE(pw_poisson_type), POINTER :: poisson_env
214 TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
215 TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_r, v_rspace_embed, v_rspace_new, &
216 v_rspace_new_aux_fit, v_tau_rspace, &
217 v_tau_rspace_aux_fit
218 TYPE(pw_r3d_rs_type), POINTER :: rho0_s_rs, rho_nlcc, v_hartree_rspace, &
219 v_sccs_rspace, v_sic_rspace, &
220 v_spin_ddapc_rest_r, vee, vppl_rspace
221 TYPE(qs_energy_type), POINTER :: energy
222 TYPE(qs_ks_env_type), POINTER :: ks_env
223 TYPE(qs_rho_type), POINTER :: rho, rho_struct, rho_xc
224 TYPE(section_vals_type), POINTER :: adiabatic_rescaling_section, &
225 hfx_sections, input, scf_section, &
226 xc_section
227 TYPE(virial_type), POINTER :: virial
228
229 CALL timeset(routinen, handle)
230 NULLIFY (admm_env, cell, dft_control, logger, mo_derivs, my_rho, &
231 rho_struct, para_env, pw_env, virial, vppl_rspace, &
232 adiabatic_rescaling_section, hfx_sections, &
233 input, scf_section, xc_section, matrix_h, matrix_h_im, matrix_s, &
234 auxbas_pw_pool, poisson_env, v_rspace_new, v_rspace_new_aux_fit, &
235 v_tau_rspace, v_tau_rspace_aux_fit, matrix_vxc, vee, rho_nlcc, &
236 ks_env, ks_matrix, ks_matrix_im, rho, energy, rho_xc, rho_r, rho_ao, rho_core)
237
238 cpassert(ASSOCIATED(qs_env))
239
240 logger => cp_get_default_logger()
241 my_print = .true.
242 IF (PRESENT(print_active)) my_print = print_active
243
244 CALL get_qs_env(qs_env, &
245 ks_env=ks_env, &
246 dft_control=dft_control, &
247 matrix_h_kp=matrix_h, &
248 matrix_h_im_kp=matrix_h_im, &
249 matrix_s_kp=matrix_s, &
250 matrix_ks_kp=ks_matrix, &
251 matrix_ks_im_kp=ks_matrix_im, &
252 matrix_vxc=matrix_vxc, &
253 pw_env=pw_env, &
254 cell=cell, &
255 para_env=para_env, &
256 input=input, &
257 virial=virial, &
258 v_hartree_rspace=v_hartree_rspace, &
259 vee=vee, &
260 rho_nlcc=rho_nlcc, &
261 rho=rho, &
262 rho_core=rho_core, &
263 rho_xc=rho_xc, &
264 energy=energy)
265
266 CALL qs_rho_get(rho, rho_r=rho_r, rho_ao_kp=rho_ao)
267
268 nimages = dft_control%nimages
269 nspins = dft_control%nspins
270
271 ! remap pointer to allow for non-kpoint external ks matrix
272 IF (PRESENT(ext_ks_matrix)) ks_matrix(1:nspins, 1:1) => ext_ks_matrix(1:nspins)
273
274 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
275
276 hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%HF")
277 CALL section_vals_get(hfx_sections, explicit=do_hfx)
278 IF (do_hfx) THEN
279 CALL section_vals_val_get(hfx_sections, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
280 i_rep_section=1)
281 END IF
282 adiabatic_rescaling_section => section_vals_get_subs_vals(input, "DFT%XC%ADIABATIC_RESCALING")
283 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
284 just_energy_xc = just_energy
285 IF (do_adiabatic_rescaling) THEN
286 !! If we perform adiabatic rescaling, the xc potential has to be scaled by the xc- and
287 !! HFX-energy. Thus, let us first calculate the energy
288 just_energy_xc = .true.
289 END IF
290
291 cpassert(ASSOCIATED(matrix_h))
292 cpassert(ASSOCIATED(matrix_s))
293 cpassert(ASSOCIATED(rho))
294 cpassert(ASSOCIATED(pw_env))
295 cpassert(SIZE(ks_matrix, 1) > 0)
296 dokp = (nimages > 1)
297
298 ! Setup the possible usage of DDAPC charges
299 do_ddapc = dft_control%qs_control%ddapc_restraint .OR. &
300 qs_env%cp_ddapc_ewald%do_decoupling .OR. &
301 qs_env%cp_ddapc_ewald%do_qmmm_periodic_decpl .OR. &
302 qs_env%cp_ddapc_ewald%do_solvation
303
304 ! Check if LRIGPW is used
305 lrigpw = dft_control%qs_control%lrigpw
306 rigpw = dft_control%qs_control%rigpw
307 IF (rigpw) THEN
308 cpassert(nimages == 1)
309 END IF
310 IF (lrigpw .AND. rigpw) THEN
311 cpabort(" LRI and RI are not compatible")
312 END IF
313
314 ! Check for GAPW method : additional terms for local densities
315 gapw = dft_control%qs_control%gapw
316 gapw_xc = dft_control%qs_control%gapw_xc
317 IF (gapw_xc .AND. gapw) THEN
318 cpabort(" GAPW and GAPW_XC are not compatible")
319 END IF
320 IF ((gapw .AND. lrigpw) .OR. (gapw_xc .AND. lrigpw)) THEN
321 cpabort(" GAPW/GAPW_XC and LRIGPW are not compatible")
322 END IF
323 IF ((gapw .AND. rigpw) .OR. (gapw_xc .AND. rigpw)) THEN
324 cpabort(" GAPW/GAPW_XC and RIGPW are not compatible")
325 END IF
326
327 do_ppl = dft_control%qs_control%do_ppl_method == do_ppl_grid
328 IF (do_ppl) THEN
329 cpassert(.NOT. gapw)
330 CALL get_qs_env(qs_env=qs_env, vppl=vppl_rspace)
331 END IF
332
333 IF (gapw_xc) THEN
334 cpassert(ASSOCIATED(rho_xc))
335 END IF
336
337 ! gets the tmp grids
338 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
339
340 IF (gapw .AND. (poisson_env%parameters%solver .EQ. pw_poisson_implicit)) THEN
341 cpabort("The implicit Poisson solver cannot be used in conjunction with GAPW.")
342 END IF
343
344 ! *** Prepare densities for gapw ***
345 IF (gapw .OR. gapw_xc) THEN
346 CALL prepare_gapw_den(qs_env, do_rho0=(.NOT. gapw_xc))
347 END IF
348
349 ! Calculate the Hartree potential
350 CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
351 CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
352
353 scf_section => section_vals_get_subs_vals(input, "DFT%SCF")
354 IF (btest(cp_print_key_should_output(logger%iter_info, scf_section, &
355 "PRINT%DETAILED_ENERGY"), &
356 cp_p_file) .AND. &
357 (.NOT. gapw) .AND. (.NOT. gapw_xc) .AND. &
358 (.NOT. (poisson_env%parameters%solver .EQ. pw_poisson_implicit))) THEN
359 CALL pw_zero(rho_tot_gspace)
360 CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density=.true.)
361 CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%e_hartree, &
362 v_hartree_gspace)
363 CALL pw_zero(rho_tot_gspace)
364 CALL pw_zero(v_hartree_gspace)
365 END IF
366
367 ! Get the total density in g-space [ions + electrons]
368 CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
369
370 IF (my_print) THEN
371 CALL print_densities(qs_env, rho)
372 END IF
373
374 IF (dft_control%do_sccs) THEN
375 ! Self-consistent continuum solvation (SCCS) model
376 NULLIFY (v_sccs_rspace)
377 ALLOCATE (v_sccs_rspace)
378 CALL auxbas_pw_pool%create_pw(v_sccs_rspace)
379
380 IF (poisson_env%parameters%solver .EQ. pw_poisson_implicit) THEN
381 cpabort("The implicit Poisson solver cannot be used together with SCCS.")
382 END IF
383
384 IF (use_virial .AND. calculate_forces) THEN
385 CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace, &
386 h_stress=h_stress)
387 virial%pv_ehartree = virial%pv_ehartree + h_stress/real(para_env%num_pe, dp)
388 virial%pv_virial = virial%pv_virial + h_stress/real(para_env%num_pe, dp)
389 ELSE
390 CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace)
391 END IF
392 ELSE
393 ! Getting the Hartree energy and Hartree potential. Also getting the stress tensor
394 ! from the Hartree term if needed. No nuclear force information here
395 IF (use_virial .AND. calculate_forces) THEN
396 h_stress(:, :) = 0.0_dp
397 CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
398 v_hartree_gspace, h_stress=h_stress, &
399 rho_core=rho_core)
400 virial%pv_ehartree = virial%pv_ehartree + h_stress/real(para_env%num_pe, dp)
401 virial%pv_virial = virial%pv_virial + h_stress/real(para_env%num_pe, dp)
402 ELSE
403 CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
404 v_hartree_gspace, rho_core=rho_core)
405 END IF
406 END IF
407
408 ! In case decouple periodic images and/or apply restraints to charges
409 IF (do_ddapc) THEN
410 CALL qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, &
411 v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, &
412 just_energy)
413 ELSE
414 dft_control%qs_control%ddapc_explicit_potential = .false.
415 dft_control%qs_control%ddapc_restraint_is_spin = .false.
416 IF (.NOT. just_energy) THEN
417 CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
418 CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
419 END IF
420 END IF
421 CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
422
423 IF (dft_control%correct_surf_dip) THEN
424 IF (dft_control%surf_dip_correct_switch) THEN
425 CALL calc_dipsurf_potential(qs_env, energy)
426 energy%hartree = energy%hartree + energy%surf_dipole
427 END IF
428 END IF
429
430 ! SIC
431 CALL calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, &
432 just_energy, calculate_forces, auxbas_pw_pool)
433
434 IF (gapw) THEN
435 CALL get_qs_env(qs_env, ecoul_1c=ecoul_1c, local_rho_set=local_rho_set)
436 CALL vh_1c_gg_integrals(qs_env, energy%hartree_1c, ecoul_1c, local_rho_set, para_env, tddft=.false., &
437 core_2nd=.false.)
438 END IF
439
440 ! Check if CDFT constraint is needed
441 CALL qs_ks_cdft_constraint(qs_env, auxbas_pw_pool, calculate_forces, cdft_control)
442
443 ! Adds the External Potential if requested
444 IF (dft_control%apply_external_potential) THEN
445 ! Compute the energy due to the external potential
446 ee_ener = 0.0_dp
447 DO ispin = 1, nspins
448 ee_ener = ee_ener + pw_integral_ab(rho_r(ispin), vee)
449 END DO
450 IF (.NOT. just_energy) THEN
451 IF (gapw) THEN
452 CALL get_qs_env(qs_env=qs_env, &
453 rho0_s_rs=rho0_s_rs)
454 cpassert(ASSOCIATED(rho0_s_rs))
455 ee_ener = ee_ener + pw_integral_ab(rho0_s_rs, vee)
456 END IF
457 END IF
458 ! the sign accounts for the charge of the electrons
459 energy%ee = -ee_ener
460 END IF
461
462 ! Adds the QM/MM potential
463 IF (qs_env%qmmm) THEN
464 CALL qmmm_calculate_energy(qs_env=qs_env, &
465 rho=rho_r, &
466 v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, &
467 qmmm_energy=energy%qmmm_el)
468 IF (qs_env%qmmm_env_qm%image_charge) THEN
469 CALL calculate_image_pot(v_hartree_rspace=v_hartree_rspace, &
470 rho_hartree_gspace=rho_tot_gspace, &
471 energy=energy, &
472 qmmm_env=qs_env%qmmm_env_qm, &
473 qs_env=qs_env)
474 IF (.NOT. just_energy) THEN
475 CALL add_image_pot_to_hartree_pot(v_hartree=v_hartree_rspace, &
476 v_metal=qs_env%ks_qmmm_env%v_metal_rspace, &
477 qs_env=qs_env)
478 IF (calculate_forces) THEN
480 potential=v_hartree_rspace, coeff=qs_env%image_coeff, &
481 forces=qs_env%qmmm_env_qm%image_charge_pot%image_forcesMM, &
482 qmmm_env=qs_env%qmmm_env_qm, qs_env=qs_env)
483 END IF
484 END IF
485 CALL qs_env%ks_qmmm_env%v_metal_rspace%release()
486 DEALLOCATE (qs_env%ks_qmmm_env%v_metal_rspace)
487 END IF
488 IF (.NOT. just_energy) THEN
489 CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
490 v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, scale=1.0_dp)
491 END IF
492 END IF
493 CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
494
495 ! SMEAGOL interface
496 IF (dft_control%smeagol_control%smeagol_enabled .AND. &
497 dft_control%smeagol_control%run_type == smeagol_runtype_emtransport) THEN
498 cpassert(ASSOCIATED(dft_control%smeagol_control%aux))
499 CALL smeagol_shift_v_hartree(v_hartree_rspace, cell, &
500 dft_control%smeagol_control%aux%HartreeLeadsLeft, &
501 dft_control%smeagol_control%aux%HartreeLeadsRight, &
502 dft_control%smeagol_control%aux%HartreeLeadsBottom, &
503 dft_control%smeagol_control%aux%VBias, &
504 dft_control%smeagol_control%aux%minL, &
505 dft_control%smeagol_control%aux%maxR, &
506 dft_control%smeagol_control%aux%isexplicit_maxR, &
507 dft_control%smeagol_control%aux%isexplicit_HartreeLeadsBottom)
508 END IF
509
510 ! calculate the density matrix for the fitted mo_coeffs
511 IF (dft_control%do_admm) THEN
512 CALL hfx_admm_init(qs_env, calculate_forces)
513
514 IF (dft_control%do_admm_mo) THEN
515 IF (qs_env%run_rtp) THEN
516 CALL rtp_admm_calc_rho_aux(qs_env)
517 ELSE
518 IF (dokp) THEN
519 CALL admm_mo_calc_rho_aux_kp(qs_env)
520 ELSE
521 CALL admm_mo_calc_rho_aux(qs_env)
522 END IF
523 END IF
524 ELSEIF (dft_control%do_admm_dm) THEN
525 CALL admm_dm_calc_rho_aux(qs_env)
526 END IF
527 END IF
528
529 ! only activate stress calculation if
530 IF (use_virial .AND. calculate_forces) virial%pv_calculate = .true.
531
532 ! *** calculate the xc potential on the pw density ***
533 ! *** associates v_rspace_new if the xc potential needs to be computed.
534 ! If we do wavefunction fitting, we need the vxc_potential in the auxiliary basis set
535 IF (dft_control%do_admm) THEN
536 CALL get_qs_env(qs_env, admm_env=admm_env)
537 xc_section => admm_env%xc_section_aux
538 CALL get_admm_env(admm_env, rho_aux_fit=rho_struct)
539
540 ! here we ignore a possible vdW section in admm_env%xc_section_aux
541 CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
542 vxc_rho=v_rspace_new_aux_fit, vxc_tau=v_tau_rspace_aux_fit, exc=energy%exc_aux_fit, &
543 just_energy=just_energy_xc)
544
545 IF (admm_env%do_gapw) THEN
546 !compute the potential due to atomic densities
547 CALL calculate_vxc_atom(qs_env, energy_only=just_energy_xc, exc1=energy%exc1_aux_fit, &
548 kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
549 xc_section_external=xc_section, &
550 rho_atom_set_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set)
551
552 END IF
553
554 NULLIFY (rho_struct)
555
556 IF (use_virial .AND. calculate_forces) THEN
557 vscale = 1.0_dp
558 !Note: ADMMS and ADMMP stress tensor only for closed-shell calculations
559 IF (admm_env%do_admms) vscale = admm_env%gsi(1)**(2.0_dp/3.0_dp)
560 IF (admm_env%do_admmp) vscale = admm_env%gsi(1)**2
561 virial%pv_exc = virial%pv_exc - vscale*virial%pv_xc
562 virial%pv_virial = virial%pv_virial - vscale*virial%pv_xc
563 ! virial%pv_xc will be zeroed in the xc routines
564 END IF
565 xc_section => admm_env%xc_section_primary
566 ELSE
567 xc_section => section_vals_get_subs_vals(input, "DFT%XC")
568 END IF
569
570 IF (gapw_xc) THEN
571 CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
572 ELSE
573 CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
574 END IF
575
576 ! zmp
577 IF (dft_control%apply_external_density .OR. dft_control%apply_external_vxc) THEN
578 energy%exc = 0.0_dp
579 CALL calculate_zmp_potential(qs_env, v_rspace_new, rho, exc=energy%exc)
580 ELSE
581 ! Embedding potential
582 IF (dft_control%apply_embed_pot) THEN
583 NULLIFY (v_rspace_embed)
584 energy%embed_corr = 0.0_dp
585 CALL get_embed_potential_energy(qs_env, rho, v_rspace_embed, dft_control, &
586 energy%embed_corr, just_energy)
587 END IF
588 ! Everything else
589 CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
590 vxc_rho=v_rspace_new, vxc_tau=v_tau_rspace, exc=energy%exc, &
591 edisp=edisp, dispersion_env=qs_env%dispersion_env, &
592 just_energy=just_energy_xc)
593 IF (edisp /= 0.0_dp) energy%dispersion = edisp
594 IF (qs_env%requires_matrix_vxc .AND. ASSOCIATED(v_rspace_new)) THEN
595 CALL compute_matrix_vxc(qs_env=qs_env, v_rspace=v_rspace_new, matrix_vxc=matrix_vxc)
596 CALL set_ks_env(ks_env, matrix_vxc=matrix_vxc)
597 END IF
598
599 IF (gapw .OR. gapw_xc) THEN
600 CALL calculate_vxc_atom(qs_env, just_energy_xc, energy%exc1, xc_section_external=xc_section)
601 ! test for not implemented (bug) option
602 IF (use_virial .AND. calculate_forces) THEN
603 IF (ASSOCIATED(v_tau_rspace)) THEN
604 cpabort("MGGA STRESS with GAPW/GAPW_XC not implemneted")
605 END IF
606 END IF
607 END IF
608
609 END IF
610
611 ! set hartree and xc potentials for use in Harris method
612 IF (qs_env%harris_method) THEN
613 CALL get_qs_env(qs_env, harris_env=harris_env)
614 CALL harris_set_potentials(harris_env, v_hartree_rspace, v_rspace_new)
615 END IF
616
617 NULLIFY (rho_struct)
618 IF (use_virial .AND. calculate_forces) THEN
619 virial%pv_exc = virial%pv_exc - virial%pv_xc
620 virial%pv_virial = virial%pv_virial - virial%pv_xc
621 END IF
622
623 ! *** Add Hartree-Fock contribution if required ***
624 IF (do_hfx) THEN
625 IF (dokp) THEN
626 CALL hfx_ks_matrix_kp(qs_env, ks_matrix, energy, calculate_forces)
627 ELSE
628 CALL hfx_ks_matrix(qs_env, ks_matrix, rho, energy, calculate_forces, &
629 just_energy, v_rspace_new, v_tau_rspace)
630 END IF
631!! Adiabatic rescaling only if do_hfx; right?????
632 END IF !do_hfx
633
634 IF (do_ppl .AND. calculate_forces) THEN
635 cpassert(.NOT. gapw)
636 DO ispin = 1, nspins
637 CALL integrate_ppl_rspace(rho_r(ispin), qs_env)
638 END DO
639 END IF
640
641 IF (ASSOCIATED(rho_nlcc) .AND. calculate_forces) THEN
642 DO ispin = 1, nspins
643 CALL integrate_rho_nlcc(v_rspace_new(ispin), qs_env)
644 IF (dft_control%do_admm) CALL integrate_rho_nlcc(v_rspace_new_aux_fit(ispin), qs_env)
645 END DO
646 END IF
647
648 ! calculate KG correction
649 IF (dft_control%qs_control%do_kg .AND. just_energy) THEN
650
651 cpassert(.NOT. (gapw .OR. gapw_xc))
652 cpassert(nimages == 1)
653 ksmat => ks_matrix(:, 1)
654 CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.false.)
655
656 ! subtract kg corr from the total energy
657 energy%exc = energy%exc - ekin_mol
658
659 END IF
660
661 ! *** Single atom contributions ***
662 IF (.NOT. just_energy) THEN
663 IF (calculate_forces) THEN
664 ! Getting nuclear force contribution from the core charge density
665 IF ((poisson_env%parameters%solver .EQ. pw_poisson_implicit) .AND. &
666 (poisson_env%parameters%dielectric_params%dielec_core_correction)) THEN
667 block
668 TYPE(pw_r3d_rs_type) :: v_minus_veps
669 CALL auxbas_pw_pool%create_pw(v_minus_veps)
670 CALL pw_copy(v_hartree_rspace, v_minus_veps)
671 CALL pw_axpy(poisson_env%implicit_env%v_eps, v_minus_veps, -v_hartree_rspace%pw_grid%dvol)
672 CALL integrate_v_core_rspace(v_minus_veps, qs_env)
673 CALL auxbas_pw_pool%give_back_pw(v_minus_veps)
674 END block
675 ELSE
676 CALL integrate_v_core_rspace(v_hartree_rspace, qs_env)
677 END IF
678 END IF
679
680 IF (.NOT. do_hfx) THEN
681 ! Initialize the Kohn-Sham matrix with the core Hamiltonian matrix
682 ! (sets ks sparsity equal to matrix_h sparsity)
683 DO ispin = 1, nspins
684 DO img = 1, nimages
685 CALL dbcsr_get_info(ks_matrix(ispin, img)%matrix, name=name) ! keep the name
686 CALL dbcsr_copy(ks_matrix(ispin, img)%matrix, matrix_h(1, img)%matrix, name=name)
687 END DO
688 END DO
689 ! imaginary part if required
690 IF (qs_env%run_rtp) THEN
691 IF (dft_control%rtp_control%velocity_gauge) THEN
692 cpassert(ASSOCIATED(matrix_h_im))
693 cpassert(ASSOCIATED(ks_matrix_im))
694 DO ispin = 1, nspins
695 DO img = 1, nimages
696 CALL dbcsr_get_info(ks_matrix_im(ispin, img)%matrix, name=name) ! keep the name
697 CALL dbcsr_copy(ks_matrix_im(ispin, img)%matrix, matrix_h_im(1, img)%matrix, name=name)
698 END DO
699 END DO
700 END IF
701 END IF
702 END IF
703
704 IF (use_virial .AND. calculate_forces) THEN
705 pv_loc = virial%pv_virial
706 END IF
707 ! sum up potentials and integrate
708 ! Pointing my_rho to the density matrix rho_ao
709 my_rho => rho_ao
710
711 CALL sum_up_and_integrate(qs_env, ks_matrix, rho, my_rho, vppl_rspace, &
712 v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, &
713 v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, &
714 cdft_control, calculate_forces)
715
716 IF (use_virial .AND. calculate_forces) THEN
717 virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
718 END IF
719 IF (dft_control%qs_control%do_kg) THEN
720 cpassert(.NOT. (gapw .OR. gapw_xc))
721 cpassert(nimages == 1)
722 ksmat => ks_matrix(:, 1)
723
724 IF (use_virial .AND. calculate_forces) THEN
725 pv_loc = virial%pv_virial
726 END IF
727
728 CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.false.)
729 ! subtract kg corr from the total energy
730 energy%exc = energy%exc - ekin_mol
731
732 ! virial corrections
733 IF (use_virial .AND. calculate_forces) THEN
734
735 ! Integral contribution
736 virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
737
738 ! GGA contribution
739 virial%pv_exc = virial%pv_exc + virial%pv_xc
740 virial%pv_virial = virial%pv_virial + virial%pv_xc
741 virial%pv_xc = 0.0_dp
742 END IF
743 END IF
744
745 ELSE
746 IF (do_hfx) THEN
747 IF (.false.) THEN
748 cpwarn("KS matrix not longer correct. Check possible problems with property calculations!")
749 END IF
750 END IF
751 END IF ! .NOT. just energy
752
753 IF (dft_control%qs_control%ddapc_explicit_potential) THEN
754 CALL auxbas_pw_pool%give_back_pw(v_spin_ddapc_rest_r)
755 DEALLOCATE (v_spin_ddapc_rest_r)
756 END IF
757
758 IF (calculate_forces .AND. dft_control%qs_control%cdft) THEN
759 IF (.NOT. cdft_control%transfer_pot) THEN
760 DO iatom = 1, SIZE(cdft_control%group)
761 CALL auxbas_pw_pool%give_back_pw(cdft_control%group(iatom)%weight)
762 DEALLOCATE (cdft_control%group(iatom)%weight)
763 END DO
764 IF (cdft_control%atomic_charges) THEN
765 DO iatom = 1, cdft_control%natoms
766 CALL auxbas_pw_pool%give_back_pw(cdft_control%charge(iatom))
767 END DO
768 DEALLOCATE (cdft_control%charge)
769 END IF
770 IF (cdft_control%type == outer_scf_becke_constraint .AND. &
771 cdft_control%becke_control%cavity_confine) THEN
772 IF (.NOT. ASSOCIATED(cdft_control%becke_control%cavity_mat)) THEN
773 CALL auxbas_pw_pool%give_back_pw(cdft_control%becke_control%cavity)
774 ELSE
775 DEALLOCATE (cdft_control%becke_control%cavity_mat)
776 END IF
777 ELSE IF (cdft_control%type == outer_scf_hirshfeld_constraint) THEN
778 IF (ASSOCIATED(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)) THEN
779 CALL auxbas_pw_pool%give_back_pw(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)
780 END IF
781 END IF
782 IF (ASSOCIATED(cdft_control%charges_fragment)) DEALLOCATE (cdft_control%charges_fragment)
783 cdft_control%save_pot = .false.
784 cdft_control%need_pot = .true.
785 cdft_control%external_control = .false.
786 END IF
787 END IF
788
789 IF (dft_control%do_sccs) THEN
790 CALL auxbas_pw_pool%give_back_pw(v_sccs_rspace)
791 DEALLOCATE (v_sccs_rspace)
792 END IF
793
794 IF (gapw) THEN
795 IF (dft_control%apply_external_potential) THEN
796 ! Integrals of the Hartree potential with g0_soft
797 CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
798 v_qmmm=vee, scale=-1.0_dp)
799 END IF
800 CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace, para_env, calculate_forces)
801 END IF
802
803 IF (gapw .OR. gapw_xc) THEN
804 ! Single atom contributions in the KS matrix ***
805 CALL update_ks_atom(qs_env, ks_matrix, rho_ao, calculate_forces)
806 IF (dft_control%do_admm) THEN
807 !Single atom contribution to the AUX matrices
808 !Note: also update ks_aux_fit matrix in case of rtp
809 CALL admm_update_ks_atom(qs_env, calculate_forces)
810 END IF
811 END IF
812
813 !Calculation of Mulliken restraint, if requested
814 CALL qs_ks_mulliken_restraint(energy, dft_control, just_energy, para_env, &
815 ks_matrix, matrix_s, rho, mulliken_order_p)
816
817 ! Add DFT+U contribution, if requested
818 IF (dft_control%dft_plus_u) THEN
819 cpassert(nimages == 1)
820 IF (just_energy) THEN
821 CALL plus_u(qs_env=qs_env)
822 ELSE
823 ksmat => ks_matrix(:, 1)
824 CALL plus_u(qs_env=qs_env, matrix_h=ksmat)
825 END IF
826 ELSE
827 energy%dft_plus_u = 0.0_dp
828 END IF
829
830 ! At this point the ks matrix should be up to date, filter it if requested
831 DO ispin = 1, nspins
832 DO img = 1, nimages
833 CALL dbcsr_filter(ks_matrix(ispin, img)%matrix, &
834 dft_control%qs_control%eps_filter_matrix)
835 END DO
836 END DO
837
838 !** merge the auxiliary KS matrix and the primary one
839 IF (dft_control%do_admm_mo) THEN
840 IF (qs_env%run_rtp) THEN
841 CALL rtp_admm_merge_ks_matrix(qs_env)
842 ELSE
843 CALL admm_mo_merge_ks_matrix(qs_env)
844 END IF
845 ELSEIF (dft_control%do_admm_dm) THEN
846 CALL admm_dm_merge_ks_matrix(qs_env)
847 END IF
848
849 ! External field (nonperiodic case)
850 CALL qs_efield_local_operator(qs_env, just_energy, calculate_forces)
851
852 ! Right now we can compute the orbital derivative here, as it depends currently only on the available
853 ! Kohn-Sham matrix. This might change in the future, in which case more pieces might need to be assembled
854 ! from this routine, notice that this part of the calculation in not linear scaling
855 ! right now this operation is only non-trivial because of occupation numbers and the restricted keyword
856 IF (qs_env%requires_mo_derivs .AND. .NOT. just_energy .AND. .NOT. qs_env%run_rtp) THEN
857 CALL get_qs_env(qs_env, mo_derivs=mo_derivs)
858 cpassert(nimages == 1)
859 ksmat => ks_matrix(:, 1)
860 CALL calc_mo_derivatives(qs_env, ksmat, mo_derivs)
861 END IF
862
863 ! ADMM overlap forces
864 IF (calculate_forces .AND. dft_control%do_admm) THEN
865 IF (dokp) THEN
866 CALL calc_admm_ovlp_forces_kp(qs_env)
867 ELSE
868 CALL calc_admm_ovlp_forces(qs_env)
869 END IF
870 END IF
871
872 ! deal with low spin roks
873 CALL low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, &
874 calculate_forces, auxbas_pw_pool)
875
876 ! deal with sic on explicit orbitals
877 CALL sic_explicit_orbitals(energy, qs_env, dft_control, poisson_env, just_energy, &
878 calculate_forces, auxbas_pw_pool)
879
880 ! Periodic external field
881 CALL qs_efield_berry_phase(qs_env, just_energy, calculate_forces)
882
883 ! adds s2_restraint energy and orbital derivatives
884 CALL qs_ks_s2_restraint(dft_control, qs_env, matrix_s, &
885 energy, calculate_forces, just_energy)
886
887 IF (do_ppl) THEN
888 ! update core energy for grid based local pseudopotential
889 ecore_ppl = 0._dp
890 DO ispin = 1, nspins
891 ecore_ppl = ecore_ppl + pw_integral_ab(vppl_rspace, rho_r(ispin))
892 END DO
893 energy%core = energy%core + ecore_ppl
894 END IF
895
896 IF (lrigpw) THEN
897 ! update core energy for ppl_ri method
898 CALL get_qs_env(qs_env, lri_env=lri_env, lri_density=lri_density)
899 IF (lri_env%ppl_ri) THEN
900 ecore_ppl = 0._dp
901 DO ispin = 1, nspins
902 lri_v_int => lri_density%lri_coefs(ispin)%lri_kinds
903 CALL v_int_ppl_energy(qs_env, lri_v_int, ecore_ppl)
904 END DO
905 energy%core = energy%core + ecore_ppl
906 END IF
907 END IF
908
909 ! Sum all energy terms to obtain the total energy
910 energy%total = energy%core_overlap + energy%core_self + energy%core + energy%hartree + &
911 energy%hartree_1c + energy%exc + energy%exc1 + energy%ex + &
912 energy%dispersion + energy%gcp + energy%qmmm_el + energy%mulliken + &
913 sum(energy%ddapc_restraint) + energy%s2_restraint + &
914 energy%dft_plus_u + energy%kTS + &
915 energy%efield + energy%efield_core + energy%ee + &
916 energy%ee_core + energy%exc_aux_fit + energy%image_charge + &
917 energy%sccs_pol + energy%cdft + energy%exc1_aux_fit
918
919 IF (dft_control%apply_embed_pot) energy%total = energy%total + energy%embed_corr
920
921 IF (abnormal_value(energy%total)) &
922 cpabort("KS energy is an abnormal value (NaN/Inf).")
923
924 ! Print detailed energy
925 IF (my_print) THEN
926 CALL print_detailed_energy(qs_env, dft_control, input, energy, mulliken_order_p)
927 END IF
928
929 CALL timestop(handle)
930
931 END SUBROUTINE qs_ks_build_kohn_sham_matrix
932
933! **************************************************************************************************
934!> \brief ...
935!> \param rho_tot_gspace ...
936!> \param qs_env ...
937!> \param rho ...
938!> \param skip_nuclear_density ...
939! **************************************************************************************************
940 SUBROUTINE calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density)
941 TYPE(pw_c1d_gs_type), INTENT(INOUT) :: rho_tot_gspace
942 TYPE(qs_environment_type), POINTER :: qs_env
943 TYPE(qs_rho_type), POINTER :: rho
944 LOGICAL, INTENT(IN), OPTIONAL :: skip_nuclear_density
945
946 INTEGER :: ispin
947 LOGICAL :: my_skip
948 TYPE(dft_control_type), POINTER :: dft_control
949 TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho_g
950 TYPE(pw_c1d_gs_type), POINTER :: rho0_s_gs, rho_core
951 TYPE(qs_charges_type), POINTER :: qs_charges
952
953 my_skip = .false.
954 IF (PRESENT(skip_nuclear_density)) my_skip = skip_nuclear_density
955
956 CALL qs_rho_get(rho, rho_g=rho_g)
957 CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
958
959 IF (.NOT. my_skip) THEN
960 NULLIFY (rho_core)
961 CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
962 IF (dft_control%qs_control%gapw) THEN
963 NULLIFY (rho0_s_gs)
964 CALL get_qs_env(qs_env=qs_env, rho0_s_gs=rho0_s_gs)
965 cpassert(ASSOCIATED(rho0_s_gs))
966 CALL pw_copy(rho0_s_gs, rho_tot_gspace)
967 IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
968 CALL pw_axpy(rho_core, rho_tot_gspace)
969 END IF
970 ELSE
971 CALL pw_copy(rho_core, rho_tot_gspace)
972 END IF
973 DO ispin = 1, dft_control%nspins
974 CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
975 END DO
976 CALL get_qs_env(qs_env=qs_env, qs_charges=qs_charges)
977 qs_charges%total_rho_gspace = pw_integrate_function(rho_tot_gspace, isign=-1)
978 ELSE
979 DO ispin = 1, dft_control%nspins
980 CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
981 END DO
982 END IF
983
984 END SUBROUTINE calc_rho_tot_gspace
985
986! **************************************************************************************************
987!> \brief compute MO derivatives
988!> \param qs_env the qs_env to update
989!> \param ks_matrix ...
990!> \param mo_derivs ...
991!> \par History
992!> 01.2014 created, transferred from qs_ks_build_kohn_sham_matrix in
993!> separate subroutine
994!> \author Dorothea Golze
995! **************************************************************************************************
996 SUBROUTINE calc_mo_derivatives(qs_env, ks_matrix, mo_derivs)
997 TYPE(qs_environment_type), POINTER :: qs_env
998 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_matrix, mo_derivs
999
1000 INTEGER :: ispin
1001 LOGICAL :: uniform_occupation
1002 REAL(kind=dp), DIMENSION(:), POINTER :: occupation_numbers
1003 TYPE(cp_fm_type), POINTER :: mo_coeff
1004 TYPE(dbcsr_type) :: mo_derivs2_tmp1, mo_derivs2_tmp2
1005 TYPE(dbcsr_type), POINTER :: mo_coeff_b
1006 TYPE(dft_control_type), POINTER :: dft_control
1007 TYPE(mo_set_type), DIMENSION(:), POINTER :: mo_array
1008
1009 NULLIFY (dft_control, mo_array, mo_coeff, mo_coeff_b, occupation_numbers)
1010
1011 CALL get_qs_env(qs_env, &
1012 dft_control=dft_control, &
1013 mos=mo_array)
1014
1015 DO ispin = 1, SIZE(mo_derivs)
1016
1017 CALL get_mo_set(mo_set=mo_array(ispin), mo_coeff=mo_coeff, &
1018 mo_coeff_b=mo_coeff_b, occupation_numbers=occupation_numbers)
1019 CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(ispin)%matrix, mo_coeff_b, &
1020 0.0_dp, mo_derivs(ispin)%matrix)
1021
1022 IF (dft_control%restricted) THEN
1023 ! only the first mo_set are actual variables, but we still need both
1024 cpassert(ispin == 1)
1025 cpassert(SIZE(mo_array) == 2)
1026 ! use a temporary array with the same size as the first spin for the second spin
1027
1028 ! uniform_occupation is needed for this case, otherwise we can no
1029 ! reconstruct things in ot, since we irreversibly sum
1030 CALL get_mo_set(mo_set=mo_array(1), uniform_occupation=uniform_occupation)
1031 cpassert(uniform_occupation)
1032 CALL get_mo_set(mo_set=mo_array(2), uniform_occupation=uniform_occupation)
1033 cpassert(uniform_occupation)
1034
1035 ! The beta-spin might have fewer orbitals than alpa-spin...
1036 ! create tempoary matrices with beta_nmo columns
1037 CALL get_mo_set(mo_set=mo_array(2), mo_coeff_b=mo_coeff_b)
1038 CALL dbcsr_create(mo_derivs2_tmp1, template=mo_coeff_b)
1039
1040 ! calculate beta derivatives
1041 CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(2)%matrix, mo_coeff_b, 0.0_dp, mo_derivs2_tmp1)
1042
1043 ! create larger matrix with alpha_nmo columns
1044 CALL dbcsr_create(mo_derivs2_tmp2, template=mo_derivs(1)%matrix)
1045 CALL dbcsr_set(mo_derivs2_tmp2, 0.0_dp)
1046
1047 ! copy into larger matrix, fills the first beta_nmo columns
1048 CALL dbcsr_copy_columns_hack(mo_derivs2_tmp2, mo_derivs2_tmp1, &
1049 mo_array(2)%nmo, 1, 1, &
1050 para_env=mo_array(1)%mo_coeff%matrix_struct%para_env, &
1051 blacs_env=mo_array(1)%mo_coeff%matrix_struct%context)
1052
1053 ! add beta contribution to alpa mo_derivs
1054 CALL dbcsr_add(mo_derivs(1)%matrix, mo_derivs2_tmp2, 1.0_dp, 1.0_dp)
1055 CALL dbcsr_release(mo_derivs2_tmp1)
1056 CALL dbcsr_release(mo_derivs2_tmp2)
1057 END IF
1058 END DO
1059
1060 IF (dft_control%do_admm_mo) THEN
1061 CALL calc_admm_mo_derivatives(qs_env, mo_derivs)
1062 END IF
1063
1064 END SUBROUTINE calc_mo_derivatives
1065
1066! **************************************************************************************************
1067!> \brief updates the Kohn Sham matrix of the given qs_env (facility method)
1068!> \param qs_env the qs_env to update
1069!> \param calculate_forces if true calculate the quantities needed
1070!> to calculate the forces. Defaults to false.
1071!> \param just_energy if true updates the energies but not the
1072!> ks matrix. Defaults to false
1073!> \param print_active ...
1074!> \par History
1075!> 4.2002 created [fawzi]
1076!> 8.2014 kpoints [JGH]
1077!> 10.2014 refractored [Ole Schuett]
1078!> \author Fawzi Mohamed
1079! **************************************************************************************************
1080 SUBROUTINE qs_ks_update_qs_env(qs_env, calculate_forces, just_energy, &
1081 print_active)
1082 TYPE(qs_environment_type), POINTER :: qs_env
1083 LOGICAL, INTENT(IN), OPTIONAL :: calculate_forces, just_energy, &
1084 print_active
1085
1086 CHARACTER(LEN=*), PARAMETER :: routinen = 'qs_ks_update_qs_env'
1087
1088 INTEGER :: handle, unit_nr
1089 LOGICAL :: c_forces, do_rebuild, energy_only, &
1090 forces_up_to_date, potential_changed, &
1091 rho_changed, s_mstruct_changed
1092 TYPE(qs_ks_env_type), POINTER :: ks_env
1093
1094 NULLIFY (ks_env)
1095 unit_nr = cp_logger_get_default_io_unit()
1096
1097 c_forces = .false.
1098 energy_only = .false.
1099 IF (PRESENT(just_energy)) energy_only = just_energy
1100 IF (PRESENT(calculate_forces)) c_forces = calculate_forces
1101
1102 IF (c_forces) THEN
1103 CALL timeset(routinen//'_forces', handle)
1104 ELSE
1105 CALL timeset(routinen, handle)
1106 END IF
1107
1108 cpassert(ASSOCIATED(qs_env))
1109
1110 CALL get_qs_env(qs_env, &
1111 ks_env=ks_env, &
1112 rho_changed=rho_changed, &
1113 s_mstruct_changed=s_mstruct_changed, &
1114 potential_changed=potential_changed, &
1115 forces_up_to_date=forces_up_to_date)
1116
1117 do_rebuild = .false.
1118 do_rebuild = do_rebuild .OR. rho_changed
1119 do_rebuild = do_rebuild .OR. s_mstruct_changed
1120 do_rebuild = do_rebuild .OR. potential_changed
1121 do_rebuild = do_rebuild .OR. (c_forces .AND. .NOT. forces_up_to_date)
1122
1123 IF (do_rebuild) THEN
1124 CALL evaluate_core_matrix_traces(qs_env)
1125
1126 ! the ks matrix will be rebuilt so this is fine now
1127 CALL set_ks_env(ks_env, potential_changed=.false.)
1128
1129 CALL rebuild_ks_matrix(qs_env, &
1130 calculate_forces=c_forces, &
1131 just_energy=energy_only, &
1132 print_active=print_active)
1133
1134 IF (.NOT. energy_only) THEN
1135 CALL set_ks_env(ks_env, &
1136 rho_changed=.false., &
1137 s_mstruct_changed=.false., &
1138 forces_up_to_date=forces_up_to_date .OR. c_forces)
1139 END IF
1140 END IF
1141
1142 CALL timestop(handle)
1143
1144 END SUBROUTINE qs_ks_update_qs_env
1145
1146! **************************************************************************************************
1147!> \brief Calculates the traces of the core matrices and the density matrix.
1148!> \param qs_env ...
1149!> \author Ole Schuett
1150! **************************************************************************************************
1151 SUBROUTINE evaluate_core_matrix_traces(qs_env)
1152 TYPE(qs_environment_type), POINTER :: qs_env
1153
1154 CHARACTER(LEN=*), PARAMETER :: routinen = 'evaluate_core_matrix_traces'
1155
1156 INTEGER :: handle
1157 REAL(kind=dp) :: energy_core_im
1158 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrixkp_h, matrixkp_t, rho_ao_kp
1159 TYPE(dft_control_type), POINTER :: dft_control
1160 TYPE(qs_energy_type), POINTER :: energy
1161 TYPE(qs_rho_type), POINTER :: rho
1162
1163 CALL timeset(routinen, handle)
1164 NULLIFY (energy, rho, dft_control, rho_ao_kp, matrixkp_t, matrixkp_h)
1165
1166 CALL get_qs_env(qs_env, &
1167 rho=rho, &
1168 energy=energy, &
1169 dft_control=dft_control, &
1170 kinetic_kp=matrixkp_t, &
1171 matrix_h_kp=matrixkp_h)
1172
1173 CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp)
1174
1175 CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy%core, dft_control%nspins)
1176
1177 ! Add the imaginary part in the RTP case
1178 IF (qs_env%run_rtp) THEN
1179 IF (dft_control%rtp_control%velocity_gauge) THEN
1180 CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
1181 CALL qs_rho_get(rho, rho_ao_im_kp=rho_ao_kp)
1182 CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy_core_im, dft_control%nspins)
1183 energy%core = energy%core - energy_core_im
1184 END IF
1185 END IF
1186
1187 ! kinetic energy
1188 IF (ASSOCIATED(matrixkp_t)) &
1189 CALL calculate_ptrace(matrixkp_t, rho_ao_kp, energy%kinetic, dft_control%nspins)
1190
1191 CALL timestop(handle)
1192 END SUBROUTINE evaluate_core_matrix_traces
1193
1194! **************************************************************************************************
1195!> \brief Calculates the traces of the core matrices and the density matrix.
1196!> \param qs_env ...
1197!> \author Johann Pototschnig
1198! **************************************************************************************************
1200 TYPE(qs_environment_type), POINTER :: qs_env
1201
1202 CHARACTER(LEN=*), PARAMETER :: routinen = 'evaluate_core_matrix_p_mix_new'
1203
1204 INTEGER :: handle
1205 REAL(kind=dp) :: energy_core_im
1206 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrixkp_h, matrixkp_t
1207 TYPE(dft_control_type), POINTER :: dft_control
1208 TYPE(qs_energy_type), POINTER :: energy
1209 TYPE(qs_scf_env_type), POINTER :: scf_env
1210
1211 CALL timeset(routinen, handle)
1212 NULLIFY (energy, dft_control, matrixkp_t, matrixkp_h)
1213
1214 CALL get_qs_env(qs_env, &
1215 energy=energy, &
1216 dft_control=dft_control, &
1217 kinetic_kp=matrixkp_t, &
1218 matrix_h_kp=matrixkp_h, &
1219 scf_env=scf_env)
1220
1221 CALL calculate_ptrace(matrixkp_h, scf_env%p_mix_new, energy%core, dft_control%nspins)
1222
1223 ! Add the imaginary part in the RTP case
1224 IF (qs_env%run_rtp) THEN
1225 IF (dft_control%rtp_control%velocity_gauge) THEN
1226 CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
1227 CALL calculate_ptrace(matrixkp_h, scf_env%p_mix_new, energy_core_im, dft_control%nspins)
1228 energy%core = energy%core - energy_core_im
1229 END IF
1230 END IF
1231
1232 ! kinetic energy
1233 IF (ASSOCIATED(matrixkp_t)) &
1234 CALL calculate_ptrace(matrixkp_t, scf_env%p_mix_new, energy%kinetic, dft_control%nspins)
1235
1236 CALL timestop(handle)
1237 END SUBROUTINE evaluate_core_matrix_p_mix_new
1238
1239! **************************************************************************************************
1240!> \brief Constructs a new Khon-Sham matrix
1241!> \param qs_env ...
1242!> \param calculate_forces ...
1243!> \param just_energy ...
1244!> \param print_active ...
1245!> \author Ole Schuett
1246! **************************************************************************************************
1247 SUBROUTINE rebuild_ks_matrix(qs_env, calculate_forces, just_energy, print_active)
1248 TYPE(qs_environment_type), POINTER :: qs_env
1249 LOGICAL, INTENT(IN) :: calculate_forces, just_energy
1250 LOGICAL, INTENT(IN), OPTIONAL :: print_active
1251
1252 CHARACTER(LEN=*), PARAMETER :: routinen = 'rebuild_ks_matrix'
1253
1254 INTEGER :: handle
1255 TYPE(dft_control_type), POINTER :: dft_control
1256
1257 CALL timeset(routinen, handle)
1258 NULLIFY (dft_control)
1259
1260 CALL get_qs_env(qs_env, dft_control=dft_control)
1261
1262 IF (dft_control%qs_control%semi_empirical) THEN
1263 CALL build_se_fock_matrix(qs_env, &
1264 calculate_forces=calculate_forces, &
1265 just_energy=just_energy)
1266
1267 ELSEIF (dft_control%qs_control%dftb) THEN
1268 CALL build_dftb_ks_matrix(qs_env, &
1269 calculate_forces=calculate_forces, &
1270 just_energy=just_energy)
1271
1272 ELSEIF (dft_control%qs_control%xtb) THEN
1273 IF (dft_control%qs_control%xtb_control%do_tblite) THEN
1274 CALL build_tblite_ks_matrix(qs_env, &
1275 calculate_forces=calculate_forces, &
1276 just_energy=just_energy)
1277 ELSE
1278 CALL build_xtb_ks_matrix(qs_env, &
1279 calculate_forces=calculate_forces, &
1280 just_energy=just_energy)
1281 END IF
1282 ELSE
1283 CALL qs_ks_build_kohn_sham_matrix(qs_env, &
1284 calculate_forces=calculate_forces, &
1285 just_energy=just_energy, &
1286 print_active=print_active)
1287 END IF
1288
1289 CALL timestop(handle)
1290
1291 END SUBROUTINE rebuild_ks_matrix
1292
1293! **************************************************************************************************
1294!> \brief Allocate ks_matrix if necessary, take current overlap matrix as template
1295!> \param qs_env ...
1296!> \param is_complex ...
1297!> \par History
1298!> refactoring 04.03.2011 [MI]
1299!> \author
1300! **************************************************************************************************
1301
1302 SUBROUTINE qs_ks_allocate_basics(qs_env, is_complex)
1303 TYPE(qs_environment_type), POINTER :: qs_env
1304 LOGICAL, INTENT(in) :: is_complex
1305
1306 CHARACTER(LEN=default_string_length) :: headline
1307 INTEGER :: ic, ispin, nimages, nspins
1308 LOGICAL :: do_kpoints
1309 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_s_kp, matrixkp_im_ks, matrixkp_ks
1310 TYPE(dbcsr_type), POINTER :: refmatrix
1311 TYPE(dft_control_type), POINTER :: dft_control
1312 TYPE(kpoint_type), POINTER :: kpoints
1313 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1314 POINTER :: sab_orb
1315 TYPE(qs_ks_env_type), POINTER :: ks_env
1316
1317 NULLIFY (dft_control, ks_env, matrix_s_kp, sab_orb, matrixkp_ks, refmatrix, matrixkp_im_ks, kpoints)
1318
1319 CALL get_qs_env(qs_env, &
1320 dft_control=dft_control, &
1321 matrix_s_kp=matrix_s_kp, &
1322 ks_env=ks_env, &
1323 kpoints=kpoints, &
1324 do_kpoints=do_kpoints, &
1325 matrix_ks_kp=matrixkp_ks, &
1326 matrix_ks_im_kp=matrixkp_im_ks)
1327
1328 IF (do_kpoints) THEN
1329 CALL get_kpoint_info(kpoints, sab_nl=sab_orb)
1330 ELSE
1331 CALL get_qs_env(qs_env, sab_orb=sab_orb)
1332 END IF
1333
1334 nspins = dft_control%nspins
1335 nimages = dft_control%nimages
1336
1337 IF (.NOT. ASSOCIATED(matrixkp_ks)) THEN
1338 CALL dbcsr_allocate_matrix_set(matrixkp_ks, nspins, nimages)
1339 refmatrix => matrix_s_kp(1, 1)%matrix
1340 DO ispin = 1, nspins
1341 DO ic = 1, nimages
1342 IF (nspins > 1) THEN
1343 IF (ispin == 1) THEN
1344 headline = "KOHN-SHAM MATRIX FOR ALPHA SPIN"
1345 ELSE
1346 headline = "KOHN-SHAM MATRIX FOR BETA SPIN"
1347 END IF
1348 ELSE
1349 headline = "KOHN-SHAM MATRIX"
1350 END IF
1351 ALLOCATE (matrixkp_ks(ispin, ic)%matrix)
1352 CALL dbcsr_create(matrix=matrixkp_ks(ispin, ic)%matrix, template=refmatrix, &
1353 name=trim(headline), matrix_type=dbcsr_type_symmetric)
1354 CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_ks(ispin, ic)%matrix, sab_orb)
1355 CALL dbcsr_set(matrixkp_ks(ispin, ic)%matrix, 0.0_dp)
1356 END DO
1357 END DO
1358 CALL set_ks_env(ks_env, matrix_ks_kp=matrixkp_ks)
1359 END IF
1360
1361 IF (is_complex) THEN
1362 IF (.NOT. ASSOCIATED(matrixkp_im_ks)) THEN
1363 cpassert(nspins .EQ. SIZE(matrixkp_ks, 1))
1364 cpassert(nimages .EQ. SIZE(matrixkp_ks, 2))
1365 CALL dbcsr_allocate_matrix_set(matrixkp_im_ks, nspins, nimages)
1366 DO ispin = 1, nspins
1367 DO ic = 1, nimages
1368 IF (nspins > 1) THEN
1369 IF (ispin == 1) THEN
1370 headline = "IMAGINARY KOHN-SHAM MATRIX FOR ALPHA SPIN"
1371 ELSE
1372 headline = "IMAGINARY KOHN-SHAM MATRIX FOR BETA SPIN"
1373 END IF
1374 ELSE
1375 headline = "IMAGINARY KOHN-SHAM MATRIX"
1376 END IF
1377 ALLOCATE (matrixkp_im_ks(ispin, ic)%matrix)
1378 refmatrix => matrixkp_ks(ispin, ic)%matrix ! base on real part, but anti-symmetric
1379 CALL dbcsr_create(matrix=matrixkp_im_ks(ispin, ic)%matrix, template=refmatrix, &
1380 name=trim(headline), matrix_type=dbcsr_type_antisymmetric)
1381 CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_im_ks(ispin, ic)%matrix, sab_orb)
1382 CALL dbcsr_set(matrixkp_im_ks(ispin, ic)%matrix, 0.0_dp)
1383 END DO
1384 END DO
1385 CALL set_ks_env(ks_env, matrix_ks_im_kp=matrixkp_im_ks)
1386 END IF
1387 END IF
1388
1389 END SUBROUTINE qs_ks_allocate_basics
1390
1391END MODULE qs_ks_methods
Contains ADMM methods which only require the density matrix.
subroutine, public admm_dm_merge_ks_matrix(qs_env)
Entry methods: Merges auxiliary Kohn-Sham matrix into primary one.
subroutine, public admm_dm_calc_rho_aux(qs_env)
Entry methods: Calculates auxiliary density matrix from primary one.
Contains ADMM methods which require molecular orbitals.
subroutine, public admm_mo_calc_rho_aux_kp(qs_env)
...
subroutine, public admm_mo_merge_ks_matrix(qs_env)
...
subroutine, public admm_update_ks_atom(qs_env, calculate_forces)
Adds the GAPW exchange contribution to the aux_fit ks matrices.
subroutine, public calc_admm_ovlp_forces_kp(qs_env)
Calculate the forces due to the AUX/ORB basis overlap in ADMM, in the KP case.
subroutine, public admm_mo_calc_rho_aux(qs_env)
...
subroutine, public calc_admm_ovlp_forces(qs_env)
Calculate the forces due to the AUX/ORB basis overlap in ADMM.
subroutine, public calc_admm_mo_derivatives(qs_env, mo_derivs)
Calculate the derivative of the AUX_FIT mo, based on the ORB mo_derivs.
Types and set/get functions for auxiliary density matrix methods.
Definition admm_types.F:15
subroutine, public get_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Get routine for the ADMM env.
Definition admm_types.F:593
Handles all functions related to the CELL.
Definition cell_types.F:15
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_multiply(transa, transb, alpha, matrix_a, matrix_b, beta, matrix_c, first_row, last_row, first_column, last_column, first_k, last_k, retain_sparsity, filter_eps, flop)
...
subroutine, public dbcsr_get_info(matrix, nblkrows_total, nblkcols_total, nfullrows_total, nfullcols_total, nblkrows_local, nblkcols_local, nfullrows_local, nfullcols_local, my_prow, my_pcol, local_rows, local_cols, proc_row_dist, proc_col_dist, row_blk_size, col_blk_size, row_blk_offset, col_blk_offset, distribution, name, matrix_type, group)
...
subroutine, public dbcsr_filter(matrix, eps)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_release(matrix)
...
subroutine, public dbcsr_add(matrix_a, matrix_b, alpha_scalar, beta_scalar)
...
DBCSR operations in CP2K.
subroutine, public dbcsr_copy_columns_hack(matrix_b, matrix_a, ncol, source_start, target_start, para_env, blacs_env)
hack for dbcsr_copy_columns
Density Derived atomic point charges from a QM calculation (see Bloechl, J. Chem. Phys....
Definition cp_ddapc.F:15
subroutine, public qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, just_energy)
Set of methods using DDAPC charges.
Definition cp_ddapc.F:81
represent a full matrix distributed on many processors
Definition cp_fm_types.F:15
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer, parameter, public cp_p_file
integer function, public cp_print_key_should_output(iteration_info, basis_section, print_key_path, used_print_key, first_time)
returns what should be done with the given property if btest(res,cp_p_store) then the property should...
Add the DFT+U contribution to the Hamiltonian matrix.
Definition dft_plus_u.F:18
subroutine, public plus_u(qs_env, matrix_h, matrix_w)
Add the DFT+U contribution to the Hamiltonian matrix. Wrapper routine for all "+U" methods.
Definition dft_plus_u.F:99
subroutine, public vh_1c_gg_integrals(qs_env, energy_hartree_1c, ecoul_1c, local_rho_set, para_env, tddft, local_rho_set_2nd, core_2nd)
Calculates one center GAPW Hartree energies and matrix elements Hartree potentials are input Takes po...
Utilities for hfx and admm methods.
subroutine, public hfx_ks_matrix(qs_env, matrix_ks, rho, energy, calculate_forces, just_energy, v_rspace_new, v_tau_rspace)
Add the hfx contributions to the Hamiltonian.
subroutine, public hfx_admm_init(qs_env, calculate_forces)
...
subroutine, public hfx_ks_matrix_kp(qs_env, matrix_ks, energy, calculate_forces)
Add the HFX K-point contribution to the real-space Hamiltonians.
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public smeagol_runtype_emtransport
integer, parameter, public do_ppl_grid
integer, parameter, public outer_scf_becke_constraint
integer, parameter, public outer_scf_hirshfeld_constraint
objects that represent the structure of input sections and the data contained in an input section
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Routines for a Kim-Gordon-like partitioning into molecular subunits.
subroutine, public kg_ekin_subset(qs_env, ks_matrix, ekin_mol, calc_force, do_kernel, pmat_ext)
Calculates the subsystem Hohenberg-Kohn kinetic energy and the forces.
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
Calculates integral matrices for LRIGPW method lri : local resolution of the identity.
subroutine, public v_int_ppl_energy(qs_env, lri_v_int, ecore_ppl_ri)
...
contains the types and subroutines for dealing with the lri_env lri : local resolution of the identit...
Collection of simple mathematical functions and subroutines.
Definition mathlib.F:15
logical function, public abnormal_value(a)
determines if a value is not normal (e.g. for Inf and Nan) based on IO to work also under optimizatio...
Definition mathlib.F:151
Interface to the message passing library MPI.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
functions related to the poisson solver on regular grids
integer, parameter, public pw_poisson_implicit
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Routines for image charge calculation within QM/MM.
subroutine, public calculate_image_pot(v_hartree_rspace, rho_hartree_gspace, energy, qmmm_env, qs_env)
determines coefficients by solving image_matrix*coeff=-pot_const by Gaussian elimination or in an ite...
subroutine, public integrate_potential_devga_rspace(potential, coeff, forces, qmmm_env, qs_env)
calculates the image forces on the MM atoms
subroutine, public add_image_pot_to_hartree_pot(v_hartree, v_metal, qs_env)
Add potential of metal (image charge pot) to Hartree Potential.
Defines CDFT control structures.
container for information about total charges on the grids
Calculation of the energies concerning the core charge distribution.
Calculation of Overlap and Hamiltonian matrices in DFTB.
subroutine, public build_dftb_ks_matrix(qs_env, calculate_forces, just_energy)
...
Calculates the energy contribution and the mo_derivative of a static periodic electric field.
subroutine, public qs_efield_berry_phase(qs_env, just_energy, calculate_forces)
...
Calculates the energy contribution and the mo_derivative of a static electric field (nonperiodic)
subroutine, public qs_efield_local_operator(qs_env, just_energy, calculate_forces)
...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, tb_tblite)
Get the QUICKSTEP environment.
subroutine, public prepare_gapw_den(qs_env, local_rho_set, do_rho0, kind_set_external, pw_env_sub)
...
Types needed for a for a Harris model calculation.
Harris method environment setup and handling.
subroutine, public harris_set_potentials(harris_env, vh_rspace, vxc_rspace)
...
Integrate single or product functions over a potential on a RS grid.
Set of routines to apply restraints to the KS hamiltonian.
subroutine, public qs_ks_s2_restraint(dft_control, qs_env, matrix_s, energy, calculate_forces, just_energy)
...
subroutine, public qs_ks_mulliken_restraint(energy, dft_control, just_energy, para_env, ks_matrix, matrix_s, rho, mulliken_order_p)
...
subroutine, public qs_ks_cdft_constraint(qs_env, auxbas_pw_pool, calculate_forces, cdft_control)
Apply a CDFT constraint.
routines that build the Kohn-Sham matrix contributions coming from local atomic densities
Definition qs_ks_atom.F:12
subroutine, public update_ks_atom(qs_env, ksmat, pmat, forces, tddft, rho_atom_external, kind_set_external, oce_external, sab_external, kscale, kintegral, kforce, fscale)
The correction to the KS matrix due to the GAPW local terms to the hartree and XC contributions is he...
Definition qs_ks_atom.F:110
routines that build the Kohn-Sham matrix (i.e calculate the coulomb and xc parts
subroutine, public evaluate_core_matrix_p_mix_new(qs_env)
Calculates the traces of the core matrices and the density matrix.
subroutine, public qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, print_active, ext_ks_matrix)
routine where the real calculations are made: the KS matrix is calculated
subroutine, public qs_ks_update_qs_env(qs_env, calculate_forces, just_energy, print_active)
updates the Kohn Sham matrix of the given qs_env (facility method)
subroutine, public qs_ks_allocate_basics(qs_env, is_complex)
Allocate ks_matrix if necessary, take current overlap matrix as template.
subroutine, public calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density)
...
subroutine, public qmmm_calculate_energy(qs_env, rho, v_qmmm, qmmm_energy)
Computes the contribution to the total energy of the QM/MM electrostatic coupling.
subroutine, public qmmm_modify_hartree_pot(v_hartree, v_qmmm, scale)
Modify the hartree potential in order to include the QM/MM correction.
subroutine, public set_ks_env(ks_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, complex_ks, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, kinetic, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_ks_im_kp, vppl, rho_core, rho_nlcc, rho_nlcc_g, vee, neighbor_list_id, kpoints, sab_orb, sab_all, sac_ae, sac_ppl, sac_lri, sap_ppnl, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_vdw, sab_scp, sab_almo, sab_kp, sab_kp_nosym, task_list, task_list_soft, subsys, dft_control, dbcsr_dist, distribution_2d, pw_env, para_env, blacs_env)
...
routines that build the Kohn-Sham matrix (i.e calculate the coulomb and xc parts
Definition qs_ks_utils.F:22
subroutine, public print_densities(qs_env, rho)
...
subroutine, public get_embed_potential_energy(qs_env, rho, v_rspace_embed, dft_control, embed_corr, just_energy)
...
subroutine, public low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, calculate_forces, auxbas_pw_pool)
do ROKS calculations yielding low spin states
subroutine, public sum_up_and_integrate(qs_env, ks_matrix, rho, my_rho, vppl_rspace, v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, cdft_control, calculate_forces)
Sum up all potentials defined on the grid and integrate.
subroutine, public print_detailed_energy(qs_env, dft_control, input, energy, mulliken_order_p)
Print detailed energies.
subroutine, public calculate_zmp_potential(qs_env, v_rspace_new, rho, exc)
Calculate the ZMP potential and energy as in Zhao, Morrison Parr PRA 50i, 2138 (1994) V_c^\lambda def...
subroutine, public calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, just_energy, calculate_forces, auxbas_pw_pool)
do sic calculations on the spin density
subroutine, public sic_explicit_orbitals(energy, qs_env, dft_control, poisson_env, just_energy, calculate_forces, auxbas_pw_pool)
do sic calculations on explicit orbitals
subroutine, public compute_matrix_vxc(qs_env, v_rspace, matrix_vxc)
compute matrix_vxc, defined via the potential created by qs_vxc_create ignores things like tau functi...
Definition and initialisation of the mo data type.
Definition qs_mo_types.F:22
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
Define the neighbor list data types and the corresponding functionality.
subroutine, public integrate_vhg0_rspace(qs_env, v_rspace, para_env, calculate_forces, local_rho_set, local_rho_set_2nd, atener, kforce, my_pools, my_rs_descs)
...
superstucture that hold various representations of the density and keeps track of which ones are vali...
subroutine, public qs_rho_get(rho_struct, rho_ao, rho_ao_im, rho_ao_kp, rho_ao_im_kp, rho_r, drho_r, rho_g, drho_g, tau_r, tau_g, rho_r_valid, drho_r_valid, rho_g_valid, drho_g_valid, tau_r_valid, tau_g_valid, tot_rho_r, tot_rho_g, rho_r_sccs, soft_valid, complex_rho_ao)
returns info about the density described by this object. If some representation is not available an e...
Self-consistent continuum solvation (SCCS) model implementation.
Definition qs_sccs.F:29
subroutine, public sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs, h_stress)
Self-consistent continuum solvation (SCCS) model implementation.
Definition qs_sccs.F:122
module that contains the definitions of the scf types
routines that build the integrals of the Vxc potential calculated for the atomic density in the basis...
Definition qs_vxc_atom.F:12
subroutine, public calculate_vxc_atom(qs_env, energy_only, exc1, gradient_atom_set, adiabatic_rescale_factor, kind_set_external, rho_atom_set_external, xc_section_external)
...
Definition qs_vxc_atom.F:85
subroutine, public qs_vxc_create(ks_env, rho_struct, xc_section, vxc_rho, vxc_tau, exc, just_energy, edisp, dispersion_env, adiabatic_rescale_factor, pw_env_external)
calculates and allocates the xc potential, already reducing it to the dependence on rho and the one o...
Definition qs_vxc.F:98
Utilities for rtp in combination with admm methods adapted routines from admm_method (author Manuel G...
subroutine, public rtp_admm_merge_ks_matrix(qs_env)
...
subroutine, public rtp_admm_calc_rho_aux(qs_env)
Compute the ADMM density matrix in case of rtp (complex MO's)
Calculation of the Fock matrix for SE methods.
subroutine, public build_se_fock_matrix(qs_env, calculate_forces, just_energy)
Construction of the Fock matrix for NDDO methods.
CP2K+SMEAGOL interface.
subroutine, public smeagol_shift_v_hartree(v_hartree_rspace, cell, hartreeleadsleft, hartreeleadsright, hartreeleadsbottom, vbias, zleft, zright, isexplicit_zright, isexplicit_bottom)
Align Hatree potential of semi-infinite leads to match bulk-transport calculation and apply external ...
subroutine, public calc_dipsurf_potential(qs_env, energy)
compute the surface dipole and the correction to the hartree potential
tblite matrix build
subroutine, public build_tblite_ks_matrix(qs_env, calculate_forces, just_energy, ext_ks_matrix)
...
Calculation of KS matrix in xTB Reference: Stefan Grimme, Christoph Bannwarth, Philip Shushkov JCTC 1...
subroutine, public build_xtb_ks_matrix(qs_env, calculate_forces, just_energy, ext_ks_matrix)
...
stores some data used in wavefunction fitting
Definition admm_types.F:120
Type defining parameters related to the simulation cell.
Definition cell_types.F:55
represent a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
Contains information about kpoints.
stores all the informations relevant to an mpi environment
contained for different pw related things
environment for the poisson solver
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Container for information about total charges on the grids.
Contains information on the Harris method.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...
keeps the density in various representations, keeping track of which ones are valid.