107 integrate_v_core_rspace
138#include "./base/base_uses.f90"
144 LOGICAL,
PARAMETER :: debug_this_module = .true.
145 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'qs_ks_methods'
178 print_active, ext_ks_matrix, ext_xc_section)
180 LOGICAL,
INTENT(in) :: calculate_forces, just_energy
181 LOGICAL,
INTENT(IN),
OPTIONAL :: print_active
183 POINTER :: ext_ks_matrix
186 CHARACTER(LEN=*),
PARAMETER :: routinen =
'qs_ks_build_kohn_sham_matrix'
188 CHARACTER(len=default_string_length) :: name
189 INTEGER :: handle, iatom, img, ispin, nimages, &
191 LOGICAL :: do_adiabatic_rescaling, do_ddapc, do_hfx, do_ppl, dokp, gapw, gapw_xc, &
192 just_energy_xc, lrigpw, my_print, rigpw, use_virial
193 REAL(kind=
dp) :: ecore_ppl, edisp, ee_ener, ekin_mol, &
194 mulliken_order_p, vscale
195 REAL(kind=
dp),
DIMENSION(3, 3) :: h_stress, pv_loc
200 TYPE(
dbcsr_p_type),
DIMENSION(:),
POINTER :: ksmat, matrix_vxc, mo_derivs
201 TYPE(
dbcsr_p_type),
DIMENSION(:, :),
POINTER :: ks_matrix, ks_matrix_im, matrix_h, &
202 matrix_h_im, matrix_s, my_rho, rho_ao
216 TYPE(
pw_r3d_rs_type),
DIMENSION(:),
POINTER :: rho_r, v_rspace_embed, v_rspace_new, &
217 v_rspace_new_aux_fit, v_tau_rspace, &
219 TYPE(
pw_r3d_rs_type),
POINTER :: rho0_s_rs, rho_nlcc, rhoz_cneo_s_rs, v_hartree_rspace, &
220 v_sccs_rspace, v_sic_rspace, v_spin_ddapc_rest_r, vee, vppl_rspace
223 TYPE(
qs_rho_type),
POINTER :: rho, rho1, rho_struct, rho_xc
225 hfx_sections, input, scf_section, &
229 CALL timeset(routinen, handle)
230 NULLIFY (admm_env, cell, dft_control, logger, mo_derivs, my_rho, &
231 rho_struct, para_env, pw_env, virial, vppl_rspace, &
232 adiabatic_rescaling_section, hfx_sections, &
233 input, scf_section, xc_section, matrix_h, matrix_h_im, matrix_s, &
234 auxbas_pw_pool, poisson_env, v_rspace_new, v_rspace_new_aux_fit, &
235 v_tau_rspace, v_tau_rspace_aux_fit, matrix_vxc, vee, rho_nlcc, &
236 ks_env, ks_matrix, ks_matrix_im, rho, energy, rho_xc, rho_r, rho_ao, rho_core)
238 cpassert(
ASSOCIATED(qs_env))
242 IF (
PRESENT(print_active)) my_print = print_active
246 dft_control=dft_control, &
247 matrix_h_kp=matrix_h, &
248 matrix_h_im_kp=matrix_h_im, &
249 matrix_s_kp=matrix_s, &
250 matrix_ks_kp=ks_matrix, &
251 matrix_ks_im_kp=ks_matrix_im, &
252 matrix_vxc=matrix_vxc, &
258 v_hartree_rspace=v_hartree_rspace, &
266 CALL qs_rho_get(rho, rho_r=rho_r, rho_ao_kp=rho_ao)
268 nimages = dft_control%nimages
269 nspins = dft_control%nspins
272 IF (
PRESENT(ext_ks_matrix)) ks_matrix(1:nspins, 1:1) => ext_ks_matrix(1:nspins)
274 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
277 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
278 just_energy_xc = just_energy
279 IF (do_adiabatic_rescaling)
THEN
282 just_energy_xc = .true.
285 cpassert(
ASSOCIATED(matrix_h))
286 cpassert(
ASSOCIATED(matrix_s))
287 cpassert(
ASSOCIATED(rho))
288 cpassert(
ASSOCIATED(pw_env))
289 cpassert(
SIZE(ks_matrix, 1) > 0)
293 do_ddapc = dft_control%qs_control%ddapc_restraint .OR. &
294 qs_env%cp_ddapc_ewald%do_decoupling .OR. &
295 qs_env%cp_ddapc_ewald%do_qmmm_periodic_decpl .OR. &
296 qs_env%cp_ddapc_ewald%do_solvation
299 lrigpw = dft_control%qs_control%lrigpw
300 rigpw = dft_control%qs_control%rigpw
302 cpassert(nimages == 1)
304 IF (lrigpw .AND. rigpw)
THEN
305 cpabort(
" LRI and RI are not compatible")
309 gapw = dft_control%qs_control%gapw
310 gapw_xc = dft_control%qs_control%gapw_xc
311 IF (gapw_xc .AND. gapw)
THEN
312 cpabort(
" GAPW and GAPW_XC are not compatible")
314 IF ((gapw .AND. lrigpw) .OR. (gapw_xc .AND. lrigpw))
THEN
315 cpabort(
" GAPW/GAPW_XC and LRIGPW are not compatible")
317 IF ((gapw .AND. rigpw) .OR. (gapw_xc .AND. rigpw))
THEN
318 cpabort(
" GAPW/GAPW_XC and RIGPW are not compatible")
321 do_ppl = dft_control%qs_control%do_ppl_method ==
do_ppl_grid
324 CALL get_qs_env(qs_env=qs_env, vppl=vppl_rspace)
328 cpassert(
ASSOCIATED(rho_xc))
332 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
335 cpabort(
"The implicit Poisson solver cannot be used in conjunction with GAPW.")
339 IF (gapw .OR. gapw_xc)
THEN
344 CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
345 CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
349 "PRINT%DETAILED_ENERGY"), &
351 (.NOT. gapw) .AND. (.NOT. gapw_xc) .AND. &
368 IF (dft_control%do_sccs)
THEN
370 NULLIFY (v_sccs_rspace)
371 ALLOCATE (v_sccs_rspace)
372 CALL auxbas_pw_pool%create_pw(v_sccs_rspace)
375 cpabort(
"The implicit Poisson solver cannot be used together with SCCS.")
378 IF (use_virial .AND. calculate_forces)
THEN
379 CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace, &
381 virial%pv_ehartree = virial%pv_ehartree + h_stress/real(para_env%num_pe,
dp)
382 virial%pv_virial = virial%pv_virial + h_stress/real(para_env%num_pe,
dp)
384 CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace)
389 IF (use_virial .AND. calculate_forces)
THEN
390 h_stress(:, :) = 0.0_dp
392 v_hartree_gspace, h_stress=h_stress, &
394 virial%pv_ehartree = virial%pv_ehartree + h_stress/real(para_env%num_pe,
dp)
395 virial%pv_virial = virial%pv_virial + h_stress/real(para_env%num_pe,
dp)
398 v_hartree_gspace, rho_core=rho_core)
404 CALL qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, &
405 v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, &
408 dft_control%qs_control%ddapc_explicit_potential = .false.
409 dft_control%qs_control%ddapc_restraint_is_spin = .false.
410 IF (.NOT. just_energy)
THEN
411 CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
412 CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
415 CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
417 IF (dft_control%correct_surf_dip)
THEN
418 IF (dft_control%surf_dip_correct_switch)
THEN
420 energy%hartree = energy%hartree + energy%surf_dipole
425 CALL calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, &
426 just_energy, calculate_forces, auxbas_pw_pool)
432 IF (dft_control%apply_external_potential)
THEN
438 IF (.NOT. just_energy)
THEN
441 rho0_s_rs=rho0_s_rs, &
442 rhoz_cneo_s_rs=rhoz_cneo_s_rs)
443 cpassert(
ASSOCIATED(rho0_s_rs))
444 IF (
ASSOCIATED(rhoz_cneo_s_rs))
THEN
445 CALL pw_axpy(rhoz_cneo_s_rs, rho0_s_rs)
448 IF (
ASSOCIATED(rhoz_cneo_s_rs))
THEN
449 CALL pw_axpy(rhoz_cneo_s_rs, rho0_s_rs, -1.0_dp)
458 IF (qs_env%qmmm)
THEN
461 v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, &
462 qmmm_energy=energy%qmmm_el)
463 IF (qs_env%qmmm_env_qm%image_charge)
THEN
465 rho_hartree_gspace=rho_tot_gspace, &
467 qmmm_env=qs_env%qmmm_env_qm, &
469 IF (.NOT. just_energy)
THEN
471 v_metal=qs_env%ks_qmmm_env%v_metal_rspace, &
473 IF (calculate_forces)
THEN
475 potential=v_hartree_rspace, coeff=qs_env%image_coeff, &
476 forces=qs_env%qmmm_env_qm%image_charge_pot%image_forcesMM, &
477 qmmm_env=qs_env%qmmm_env_qm, qs_env=qs_env)
480 CALL qs_env%ks_qmmm_env%v_metal_rspace%release()
481 DEALLOCATE (qs_env%ks_qmmm_env%v_metal_rspace)
483 IF (.NOT. just_energy)
THEN
485 v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, scale=1.0_dp)
488 CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
491 IF (dft_control%smeagol_control%smeagol_enabled .AND. &
493 cpassert(
ASSOCIATED(dft_control%smeagol_control%aux))
495 dft_control%smeagol_control%aux%HartreeLeadsLeft, &
496 dft_control%smeagol_control%aux%HartreeLeadsRight, &
497 dft_control%smeagol_control%aux%HartreeLeadsBottom, &
498 dft_control%smeagol_control%aux%VBias, &
499 dft_control%smeagol_control%aux%minL, &
500 dft_control%smeagol_control%aux%maxR, &
501 dft_control%smeagol_control%aux%isexplicit_maxR, &
502 dft_control%smeagol_control%aux%isexplicit_HartreeLeadsBottom)
506 IF (dft_control%do_admm)
THEN
507 IF (
PRESENT(ext_xc_section))
THEN
513 IF (dft_control%do_admm_mo)
THEN
514 IF (qs_env%run_rtp)
THEN
523 ELSEIF (dft_control%do_admm_dm)
THEN
529 IF (use_virial .AND. calculate_forces) virial%pv_calculate = .true.
534 IF (dft_control%do_admm)
THEN
536 xc_section => admm_env%xc_section_aux
540 CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
541 vxc_rho=v_rspace_new_aux_fit, vxc_tau=v_tau_rspace_aux_fit, exc=energy%exc_aux_fit, &
542 just_energy=just_energy_xc)
544 IF (admm_env%do_gapw)
THEN
546 CALL calculate_vxc_atom(qs_env, energy_only=just_energy_xc, exc1=energy%exc1_aux_fit, &
547 kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
548 xc_section_external=xc_section, &
549 rho_atom_set_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set)
555 IF (use_virial .AND. calculate_forces)
THEN
558 IF (admm_env%do_admms) vscale = admm_env%gsi(1)**(2.0_dp/3.0_dp)
559 IF (admm_env%do_admmp) vscale = admm_env%gsi(1)**2
560 virial%pv_exc = virial%pv_exc - vscale*virial%pv_xc
561 virial%pv_virial = virial%pv_virial - vscale*virial%pv_xc
564 xc_section => admm_env%xc_section_primary
568 IF (
PRESENT(ext_xc_section)) xc_section => ext_xc_section
572 CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
574 CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
578 IF (dft_control%apply_external_density .OR. dft_control%apply_external_vxc)
THEN
583 IF (dft_control%apply_embed_pot)
THEN
584 NULLIFY (v_rspace_embed)
585 energy%embed_corr = 0.0_dp
587 energy%embed_corr, just_energy)
590 CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
591 vxc_rho=v_rspace_new, vxc_tau=v_tau_rspace, exc=energy%exc, &
592 edisp=edisp, dispersion_env=qs_env%dispersion_env, &
593 just_energy=just_energy_xc)
594 IF (edisp /= 0.0_dp) energy%dispersion = edisp
595 IF (qs_env%requires_matrix_vxc .AND.
ASSOCIATED(v_rspace_new))
THEN
597 CALL set_ks_env(ks_env, matrix_vxc=matrix_vxc)
600 IF (gapw .OR. gapw_xc)
THEN
601 CALL calculate_vxc_atom(qs_env, just_energy_xc, energy%exc1, xc_section_external=xc_section)
603 IF (use_virial .AND. calculate_forces)
THEN
604 IF (
ASSOCIATED(v_tau_rspace))
THEN
605 cpabort(
"MGGA STRESS with GAPW/GAPW_XC not implemneted")
613 IF (qs_env%harris_method)
THEN
614 CALL get_qs_env(qs_env, harris_env=harris_env)
619 IF (use_virial .AND. calculate_forces)
THEN
620 virial%pv_exc = virial%pv_exc - virial%pv_xc
621 virial%pv_virial = virial%pv_virial - virial%pv_xc
632 CALL hfx_ks_matrix(qs_env, ks_matrix, rho, energy, calculate_forces, &
633 just_energy, v_rspace_new, v_tau_rspace, ext_xc_section=xc_section)
637 IF (do_ppl .AND. calculate_forces)
THEN
640 CALL integrate_ppl_rspace(rho_r(ispin), qs_env)
644 IF (
ASSOCIATED(rho_nlcc) .AND. calculate_forces)
THEN
646 CALL integrate_rho_nlcc(v_rspace_new(ispin), qs_env)
647 IF (dft_control%do_admm)
CALL integrate_rho_nlcc(v_rspace_new_aux_fit(ispin), qs_env)
652 IF (dft_control%qs_control%do_kg .AND. just_energy)
THEN
654 cpassert(.NOT. (gapw .OR. gapw_xc))
655 cpassert(nimages == 1)
656 ksmat => ks_matrix(:, 1)
657 CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.false.)
660 energy%exc = energy%exc - ekin_mol
665 IF (.NOT. just_energy)
THEN
666 IF (calculate_forces)
THEN
669 (poisson_env%parameters%dielectric_params%dielec_core_correction))
THEN
672 CALL auxbas_pw_pool%create_pw(v_minus_veps)
673 CALL pw_copy(v_hartree_rspace, v_minus_veps)
674 CALL pw_axpy(poisson_env%implicit_env%v_eps, v_minus_veps, -v_hartree_rspace%pw_grid%dvol)
675 CALL integrate_v_core_rspace(v_minus_veps, qs_env)
676 CALL auxbas_pw_pool%give_back_pw(v_minus_veps)
679 CALL integrate_v_core_rspace(v_hartree_rspace, qs_env)
683 IF (.NOT. do_hfx)
THEN
689 CALL dbcsr_copy(ks_matrix(ispin, img)%matrix, matrix_h(1, img)%matrix, name=name)
693 IF (qs_env%run_rtp)
THEN
694 IF (dft_control%rtp_control%velocity_gauge)
THEN
695 cpassert(
ASSOCIATED(matrix_h_im))
696 cpassert(
ASSOCIATED(ks_matrix_im))
700 CALL dbcsr_copy(ks_matrix_im(ispin, img)%matrix, matrix_h_im(1, img)%matrix, name=name)
707 IF (use_virial .AND. calculate_forces)
THEN
708 pv_loc = virial%pv_virial
715 v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, &
716 v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, &
717 cdft_control, calculate_forces)
719 IF (calculate_forces)
THEN
721 CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
723 CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
728 IF (dft_control%do_admm)
THEN
730 xc_section => admm_env%xc_section_aux
736 IF (use_virial .AND. calculate_forces)
THEN
737 virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
739 IF (dft_control%qs_control%do_kg)
THEN
740 cpassert(.NOT. (gapw .OR. gapw_xc))
741 cpassert(nimages == 1)
742 ksmat => ks_matrix(:, 1)
744 IF (use_virial .AND. calculate_forces)
THEN
745 pv_loc = virial%pv_virial
748 CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.false.)
750 energy%exc = energy%exc - ekin_mol
753 IF (use_virial .AND. calculate_forces)
THEN
756 virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
759 virial%pv_exc = virial%pv_exc + virial%pv_xc
760 virial%pv_virial = virial%pv_virial + virial%pv_xc
761 virial%pv_xc = 0.0_dp
768 cpwarn(
"KS matrix no longer correct. Check possible problems with property calculations!")
773 IF (dft_control%qs_control%ddapc_explicit_potential)
THEN
774 CALL auxbas_pw_pool%give_back_pw(v_spin_ddapc_rest_r)
775 DEALLOCATE (v_spin_ddapc_rest_r)
778 IF (calculate_forces .AND. dft_control%qs_control%cdft)
THEN
779 IF (.NOT. cdft_control%transfer_pot)
THEN
780 DO iatom = 1,
SIZE(cdft_control%group)
781 CALL auxbas_pw_pool%give_back_pw(cdft_control%group(iatom)%weight)
782 DEALLOCATE (cdft_control%group(iatom)%weight)
784 IF (cdft_control%atomic_charges)
THEN
785 DO iatom = 1, cdft_control%natoms
786 CALL auxbas_pw_pool%give_back_pw(cdft_control%charge(iatom))
788 DEALLOCATE (cdft_control%charge)
791 cdft_control%becke_control%cavity_confine)
THEN
792 IF (.NOT.
ASSOCIATED(cdft_control%becke_control%cavity_mat))
THEN
793 CALL auxbas_pw_pool%give_back_pw(cdft_control%becke_control%cavity)
795 DEALLOCATE (cdft_control%becke_control%cavity_mat)
798 IF (
ASSOCIATED(cdft_control%hirshfeld_control%hirshfeld_env%fnorm))
THEN
799 CALL auxbas_pw_pool%give_back_pw(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)
802 IF (
ASSOCIATED(cdft_control%charges_fragment))
DEALLOCATE (cdft_control%charges_fragment)
803 cdft_control%save_pot = .false.
804 cdft_control%need_pot = .true.
805 cdft_control%external_control = .false.
809 IF (dft_control%do_sccs)
THEN
810 CALL auxbas_pw_pool%give_back_pw(v_sccs_rspace)
811 DEALLOCATE (v_sccs_rspace)
815 IF (dft_control%apply_external_potential)
THEN
818 v_qmmm=vee, scale=-1.0_dp)
823 CALL get_qs_env(qs_env, ecoul_1c=ecoul_1c, local_rho_set=local_rho_set)
824 CALL vh_1c_gg_integrals(qs_env, energy%hartree_1c, ecoul_1c, local_rho_set, para_env, tddft=.false., &
827 energy%core_cneo = 0.0_dp
828 IF (
ASSOCIATED(local_rho_set%rhoz_cneo_set))
THEN
829 DO iatom = 1,
SIZE(local_rho_set%rhoz_cneo_set)
830 energy%core_cneo = energy%core_cneo + local_rho_set%rhoz_cneo_set(iatom)%e_core
835 IF (gapw .OR. gapw_xc)
THEN
838 IF (dft_control%do_admm)
THEN
847 ks_matrix, matrix_s, rho, mulliken_order_p)
850 IF (dft_control%dft_plus_u)
THEN
851 cpassert(nimages == 1)
852 IF (just_energy)
THEN
853 CALL plus_u(qs_env=qs_env)
855 ksmat => ks_matrix(:, 1)
856 CALL plus_u(qs_env=qs_env, matrix_h=ksmat)
859 energy%dft_plus_u = 0.0_dp
866 dft_control%qs_control%eps_filter_matrix)
871 IF (dft_control%do_admm_mo)
THEN
872 IF (qs_env%run_rtp)
THEN
877 ELSEIF (dft_control%do_admm_dm)
THEN
888 IF (qs_env%requires_mo_derivs .AND. .NOT. just_energy .AND. .NOT. qs_env%run_rtp)
THEN
890 cpassert(nimages == 1)
891 ksmat => ks_matrix(:, 1)
892 CALL calc_mo_derivatives(qs_env, ksmat, mo_derivs)
896 IF (calculate_forces .AND. dft_control%do_admm)
THEN
905 CALL low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, &
906 calculate_forces, auxbas_pw_pool)
910 calculate_forces, auxbas_pw_pool)
917 energy, calculate_forces, just_energy)
925 energy%core = energy%core + ecore_ppl
930 CALL get_qs_env(qs_env, lri_env=lri_env, lri_density=lri_density)
931 IF (lri_env%ppl_ri)
THEN
934 lri_v_int => lri_density%lri_coefs(ispin)%lri_kinds
937 energy%core = energy%core + ecore_ppl
942 energy%total = energy%core_overlap + energy%core_self + energy%core_cneo + energy%core + &
943 energy%hartree + energy%hartree_1c + energy%exc + energy%exc1 + energy%ex + &
944 energy%dispersion + energy%gcp + energy%qmmm_el + energy%mulliken + &
945 sum(energy%ddapc_restraint) + energy%s2_restraint + &
946 energy%dft_plus_u + energy%kTS + &
947 energy%efield + energy%efield_core + energy%ee + &
948 energy%ee_core + energy%exc_aux_fit + energy%image_charge + &
949 energy%sccs_pol + energy%cdft + energy%exc1_aux_fit
951 IF (dft_control%apply_embed_pot) energy%total = energy%total + energy%embed_corr
954 cpabort(
"KS energy is an abnormal value (NaN/Inf).")
961 CALL timestop(handle)
973 TYPE(pw_c1d_gs_type),
INTENT(INOUT) :: rho_tot_gspace
974 TYPE(qs_environment_type),
POINTER :: qs_env
975 TYPE(qs_rho_type),
POINTER :: rho
976 LOGICAL,
INTENT(IN),
OPTIONAL :: skip_nuclear_density
980 TYPE(dft_control_type),
POINTER :: dft_control
981 TYPE(pw_c1d_gs_type),
DIMENSION(:),
POINTER :: rho_g
982 TYPE(pw_c1d_gs_type),
POINTER :: rho0_s_gs, rho_core, rhoz_cneo_s_gs
983 TYPE(qs_charges_type),
POINTER :: qs_charges
986 IF (
PRESENT(skip_nuclear_density)) my_skip = skip_nuclear_density
988 CALL qs_rho_get(rho, rho_g=rho_g)
989 CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
991 IF (.NOT. my_skip)
THEN
993 CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
994 IF (dft_control%qs_control%gapw)
THEN
995 NULLIFY (rho0_s_gs, rhoz_cneo_s_gs)
996 CALL get_qs_env(qs_env=qs_env, rho0_s_gs=rho0_s_gs, rhoz_cneo_s_gs=rhoz_cneo_s_gs)
997 cpassert(
ASSOCIATED(rho0_s_gs))
998 CALL pw_copy(rho0_s_gs, rho_tot_gspace)
999 IF (
ASSOCIATED(rhoz_cneo_s_gs))
THEN
1000 CALL pw_axpy(rhoz_cneo_s_gs, rho_tot_gspace)
1002 IF (dft_control%qs_control%gapw_control%nopaw_as_gpw)
THEN
1003 CALL pw_axpy(rho_core, rho_tot_gspace)
1006 CALL pw_copy(rho_core, rho_tot_gspace)
1008 DO ispin = 1, dft_control%nspins
1009 CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
1011 CALL get_qs_env(qs_env=qs_env, qs_charges=qs_charges)
1012 qs_charges%total_rho_gspace = pw_integrate_function(rho_tot_gspace, isign=-1)
1014 DO ispin = 1, dft_control%nspins
1015 CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
1031 SUBROUTINE calc_mo_derivatives(qs_env, ks_matrix, mo_derivs)
1032 TYPE(qs_environment_type),
POINTER :: qs_env
1033 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: ks_matrix, mo_derivs
1036 LOGICAL :: uniform_occupation
1037 REAL(kind=dp),
DIMENSION(:),
POINTER :: occupation_numbers
1038 TYPE(cp_fm_type),
POINTER :: mo_coeff
1039 TYPE(dbcsr_type) :: mo_derivs2_tmp1, mo_derivs2_tmp2
1040 TYPE(dbcsr_type),
POINTER :: mo_coeff_b
1041 TYPE(dft_control_type),
POINTER :: dft_control
1042 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mo_array
1044 NULLIFY (dft_control, mo_array, mo_coeff, mo_coeff_b, occupation_numbers)
1046 CALL get_qs_env(qs_env, &
1047 dft_control=dft_control, &
1050 DO ispin = 1,
SIZE(mo_derivs)
1052 CALL get_mo_set(mo_set=mo_array(ispin), mo_coeff=mo_coeff, &
1053 mo_coeff_b=mo_coeff_b, occupation_numbers=occupation_numbers)
1054 CALL dbcsr_multiply(
'n',
'n', 1.0_dp, ks_matrix(ispin)%matrix, mo_coeff_b, &
1055 0.0_dp, mo_derivs(ispin)%matrix)
1057 IF (dft_control%restricted)
THEN
1059 cpassert(ispin == 1)
1060 cpassert(
SIZE(mo_array) == 2)
1065 CALL get_mo_set(mo_set=mo_array(1), uniform_occupation=uniform_occupation)
1066 cpassert(uniform_occupation)
1067 CALL get_mo_set(mo_set=mo_array(2), uniform_occupation=uniform_occupation)
1068 cpassert(uniform_occupation)
1072 CALL get_mo_set(mo_set=mo_array(2), mo_coeff_b=mo_coeff_b)
1073 CALL dbcsr_create(mo_derivs2_tmp1, template=mo_coeff_b)
1076 CALL dbcsr_multiply(
'n',
'n', 1.0_dp, ks_matrix(2)%matrix, mo_coeff_b, 0.0_dp, mo_derivs2_tmp1)
1079 CALL dbcsr_create(mo_derivs2_tmp2, template=mo_derivs(1)%matrix)
1080 CALL dbcsr_set(mo_derivs2_tmp2, 0.0_dp)
1083 CALL dbcsr_copy_columns_hack(mo_derivs2_tmp2, mo_derivs2_tmp1, &
1084 mo_array(2)%nmo, 1, 1, &
1085 para_env=mo_array(1)%mo_coeff%matrix_struct%para_env, &
1086 blacs_env=mo_array(1)%mo_coeff%matrix_struct%context)
1089 CALL dbcsr_add(mo_derivs(1)%matrix, mo_derivs2_tmp2, 1.0_dp, 1.0_dp)
1090 CALL dbcsr_release(mo_derivs2_tmp1)
1091 CALL dbcsr_release(mo_derivs2_tmp2)
1095 IF (dft_control%do_admm_mo)
THEN
1096 CALL calc_admm_mo_derivatives(qs_env, mo_derivs)
1099 END SUBROUTINE calc_mo_derivatives
1117 TYPE(qs_environment_type),
POINTER :: qs_env
1118 LOGICAL,
INTENT(IN),
OPTIONAL :: calculate_forces, just_energy, &
1121 CHARACTER(LEN=*),
PARAMETER :: routinen =
'qs_ks_update_qs_env'
1123 INTEGER :: handle, unit_nr
1124 LOGICAL :: c_forces, do_rebuild, energy_only, &
1125 forces_up_to_date, potential_changed, &
1126 rho_changed, s_mstruct_changed
1127 TYPE(qs_ks_env_type),
POINTER :: ks_env
1130 unit_nr = cp_logger_get_default_io_unit()
1133 energy_only = .false.
1134 IF (
PRESENT(just_energy)) energy_only = just_energy
1135 IF (
PRESENT(calculate_forces)) c_forces = calculate_forces
1138 CALL timeset(routinen//
'_forces', handle)
1140 CALL timeset(routinen, handle)
1143 cpassert(
ASSOCIATED(qs_env))
1145 CALL get_qs_env(qs_env, &
1147 rho_changed=rho_changed, &
1148 s_mstruct_changed=s_mstruct_changed, &
1149 potential_changed=potential_changed, &
1150 forces_up_to_date=forces_up_to_date)
1152 do_rebuild = .false.
1153 do_rebuild = do_rebuild .OR. rho_changed
1154 do_rebuild = do_rebuild .OR. s_mstruct_changed
1155 do_rebuild = do_rebuild .OR. potential_changed
1156 do_rebuild = do_rebuild .OR. (c_forces .AND. .NOT. forces_up_to_date)
1158 IF (do_rebuild)
THEN
1162 CALL set_ks_env(ks_env, potential_changed=.false.)
1164 CALL rebuild_ks_matrix(qs_env, &
1165 calculate_forces=c_forces, &
1166 just_energy=energy_only, &
1167 print_active=print_active)
1169 IF (.NOT. energy_only)
THEN
1170 CALL set_ks_env(ks_env, &
1171 rho_changed=.false., &
1172 s_mstruct_changed=.false., &
1173 forces_up_to_date=forces_up_to_date .OR. c_forces)
1177 CALL timestop(handle)
1188 TYPE(qs_environment_type),
POINTER :: qs_env
1189 TYPE(dbcsr_p_type),
DIMENSION(:, :),
OPTIONAL, &
1190 POINTER :: rho_ao_ext
1192 CHARACTER(LEN=*),
PARAMETER :: routinen =
'evaluate_core_matrix_traces'
1195 REAL(kind=dp) :: energy_core_im
1196 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrixkp_h, matrixkp_t, rho_ao_kp
1197 TYPE(dft_control_type),
POINTER :: dft_control
1198 TYPE(qs_energy_type),
POINTER :: energy
1199 TYPE(qs_rho_type),
POINTER :: rho
1201 CALL timeset(routinen, handle)
1202 NULLIFY (energy, rho, dft_control, rho_ao_kp, matrixkp_t, matrixkp_h)
1204 CALL get_qs_env(qs_env, &
1207 dft_control=dft_control, &
1208 kinetic_kp=matrixkp_t, &
1209 matrix_h_kp=matrixkp_h)
1211 IF (
PRESENT(rho_ao_ext))
THEN
1212 rho_ao_kp => rho_ao_ext
1214 CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp)
1217 CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy%core, dft_control%nspins)
1220 IF (qs_env%run_rtp)
THEN
1221 IF (dft_control%rtp_control%velocity_gauge)
THEN
1222 CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
1223 CALL qs_rho_get(rho, rho_ao_im_kp=rho_ao_kp)
1224 CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy_core_im, dft_control%nspins)
1225 energy%core = energy%core - energy_core_im
1230 IF (
ASSOCIATED(matrixkp_t)) &
1231 CALL calculate_ptrace(matrixkp_t, rho_ao_kp, energy%kinetic, dft_control%nspins)
1233 CALL timestop(handle)
1244 SUBROUTINE rebuild_ks_matrix(qs_env, calculate_forces, just_energy, print_active)
1245 TYPE(qs_environment_type),
POINTER :: qs_env
1246 LOGICAL,
INTENT(IN) :: calculate_forces, just_energy
1247 LOGICAL,
INTENT(IN),
OPTIONAL :: print_active
1249 CHARACTER(LEN=*),
PARAMETER :: routinen =
'rebuild_ks_matrix'
1252 TYPE(dft_control_type),
POINTER :: dft_control
1254 CALL timeset(routinen, handle)
1255 NULLIFY (dft_control)
1257 CALL get_qs_env(qs_env, dft_control=dft_control)
1259 IF (dft_control%qs_control%semi_empirical)
THEN
1260 CALL build_se_fock_matrix(qs_env, &
1261 calculate_forces=calculate_forces, &
1262 just_energy=just_energy)
1264 ELSEIF (dft_control%qs_control%dftb)
THEN
1265 CALL build_dftb_ks_matrix(qs_env, &
1266 calculate_forces=calculate_forces, &
1267 just_energy=just_energy)
1269 ELSEIF (dft_control%qs_control%xtb)
THEN
1270 IF (dft_control%qs_control%xtb_control%do_tblite)
THEN
1271 CALL build_tblite_ks_matrix(qs_env, &
1272 calculate_forces=calculate_forces, &
1273 just_energy=just_energy)
1275 CALL build_xtb_ks_matrix(qs_env, &
1276 calculate_forces=calculate_forces, &
1277 just_energy=just_energy)
1281 calculate_forces=calculate_forces, &
1282 just_energy=just_energy, &
1283 print_active=print_active)
1286 CALL timestop(handle)
1288 END SUBROUTINE rebuild_ks_matrix
1300 TYPE(qs_environment_type),
POINTER :: qs_env
1301 LOGICAL,
INTENT(in) :: is_complex
1303 CHARACTER(LEN=default_string_length) :: headline
1304 INTEGER :: ic, ispin, nimages, nspins
1305 LOGICAL :: do_kpoints
1306 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_kp, matrixkp_im_ks, matrixkp_ks
1307 TYPE(dbcsr_type),
POINTER :: refmatrix
1308 TYPE(dft_control_type),
POINTER :: dft_control
1309 TYPE(kpoint_type),
POINTER :: kpoints
1310 TYPE(neighbor_list_set_p_type),
DIMENSION(:), &
1312 TYPE(qs_ks_env_type),
POINTER :: ks_env
1314 NULLIFY (dft_control, ks_env, matrix_s_kp, sab_orb, matrixkp_ks, refmatrix, matrixkp_im_ks, kpoints)
1316 CALL get_qs_env(qs_env, &
1317 dft_control=dft_control, &
1318 matrix_s_kp=matrix_s_kp, &
1321 do_kpoints=do_kpoints, &
1322 matrix_ks_kp=matrixkp_ks, &
1323 matrix_ks_im_kp=matrixkp_im_ks)
1325 IF (do_kpoints)
THEN
1326 CALL get_kpoint_info(kpoints, sab_nl=sab_orb)
1328 CALL get_qs_env(qs_env, sab_orb=sab_orb)
1331 nspins = dft_control%nspins
1332 nimages = dft_control%nimages
1334 IF (.NOT.
ASSOCIATED(matrixkp_ks))
THEN
1335 CALL dbcsr_allocate_matrix_set(matrixkp_ks, nspins, nimages)
1336 refmatrix => matrix_s_kp(1, 1)%matrix
1337 DO ispin = 1, nspins
1339 IF (nspins > 1)
THEN
1340 IF (ispin == 1)
THEN
1341 headline =
"KOHN-SHAM MATRIX FOR ALPHA SPIN"
1343 headline =
"KOHN-SHAM MATRIX FOR BETA SPIN"
1346 headline =
"KOHN-SHAM MATRIX"
1348 ALLOCATE (matrixkp_ks(ispin, ic)%matrix)
1349 CALL dbcsr_create(matrix=matrixkp_ks(ispin, ic)%matrix, template=refmatrix, &
1350 name=trim(headline), matrix_type=dbcsr_type_symmetric)
1351 CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_ks(ispin, ic)%matrix, sab_orb)
1352 CALL dbcsr_set(matrixkp_ks(ispin, ic)%matrix, 0.0_dp)
1355 CALL set_ks_env(ks_env, matrix_ks_kp=matrixkp_ks)
1358 IF (is_complex)
THEN
1359 IF (.NOT.
ASSOCIATED(matrixkp_im_ks))
THEN
1360 cpassert(nspins ==
SIZE(matrixkp_ks, 1))
1361 cpassert(nimages ==
SIZE(matrixkp_ks, 2))
1362 CALL dbcsr_allocate_matrix_set(matrixkp_im_ks, nspins, nimages)
1363 DO ispin = 1, nspins
1365 IF (nspins > 1)
THEN
1366 IF (ispin == 1)
THEN
1367 headline =
"IMAGINARY KOHN-SHAM MATRIX FOR ALPHA SPIN"
1369 headline =
"IMAGINARY KOHN-SHAM MATRIX FOR BETA SPIN"
1372 headline =
"IMAGINARY KOHN-SHAM MATRIX"
1374 ALLOCATE (matrixkp_im_ks(ispin, ic)%matrix)
1375 refmatrix => matrixkp_ks(ispin, ic)%matrix
1376 CALL dbcsr_create(matrix=matrixkp_im_ks(ispin, ic)%matrix, template=refmatrix, &
1377 name=trim(headline), matrix_type=dbcsr_type_antisymmetric)
1378 CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_im_ks(ispin, ic)%matrix, sab_orb)
1379 CALL dbcsr_set(matrixkp_im_ks(ispin, ic)%matrix, 0.0_dp)
1382 CALL set_ks_env(ks_env, matrix_ks_im_kp=matrixkp_im_ks)
subroutine, public accint_weight_force(qs_env, rho, rho1, order, xc_section, triplet)
...
Contains ADMM methods which only require the density matrix.
subroutine, public admm_dm_merge_ks_matrix(qs_env)
Entry methods: Merges auxiliary Kohn-Sham matrix into primary one.
subroutine, public admm_dm_calc_rho_aux(qs_env)
Entry methods: Calculates auxiliary density matrix from primary one.
Contains ADMM methods which require molecular orbitals.
subroutine, public admm_mo_calc_rho_aux_kp(qs_env)
...
subroutine, public admm_mo_merge_ks_matrix(qs_env)
...
subroutine, public admm_update_ks_atom(qs_env, calculate_forces)
Adds the GAPW exchange contribution to the aux_fit ks matrices.
subroutine, public calc_admm_ovlp_forces_kp(qs_env)
Calculate the forces due to the AUX/ORB basis overlap in ADMM, in the KP case.
subroutine, public admm_mo_calc_rho_aux(qs_env)
...
subroutine, public calc_admm_ovlp_forces(qs_env)
Calculate the forces due to the AUX/ORB basis overlap in ADMM.
subroutine, public calc_admm_mo_derivatives(qs_env, mo_derivs)
Calculate the derivative of the AUX_FIT mo, based on the ORB mo_derivs.
Types and set/get functions for auxiliary density matrix methods.
subroutine, public get_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Get routine for the ADMM env.
Handles all functions related to the CELL.
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_multiply(transa, transb, alpha, matrix_a, matrix_b, beta, matrix_c, first_row, last_row, first_column, last_column, first_k, last_k, retain_sparsity, filter_eps, flop)
...
subroutine, public dbcsr_get_info(matrix, nblkrows_total, nblkcols_total, nfullrows_total, nfullcols_total, nblkrows_local, nblkcols_local, nfullrows_local, nfullcols_local, my_prow, my_pcol, local_rows, local_cols, proc_row_dist, proc_col_dist, row_blk_size, col_blk_size, row_blk_offset, col_blk_offset, distribution, name, matrix_type, group)
...
subroutine, public dbcsr_filter(matrix, eps)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_release(matrix)
...
subroutine, public dbcsr_add(matrix_a, matrix_b, alpha_scalar, beta_scalar)
...
Routines that link DBCSR and CP2K concepts together.
subroutine, public cp_dbcsr_alloc_block_from_nbl(matrix, sab_orb, desymmetrize)
allocate the blocks of a dbcsr based on the neighbor list
DBCSR operations in CP2K.
subroutine, public dbcsr_copy_columns_hack(matrix_b, matrix_a, ncol, source_start, target_start, para_env, blacs_env)
hack for dbcsr_copy_columns
Density Derived atomic point charges from a QM calculation (see Bloechl, J. Chem. Phys....
subroutine, public qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, just_energy)
Set of methods using DDAPC charges.
represent a full matrix distributed on many processors
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer, parameter, public cp_p_file
integer function, public cp_print_key_should_output(iteration_info, basis_section, print_key_path, used_print_key, first_time)
returns what should be done with the given property if btest(res,cp_p_store) then the property should...
Add the DFT+U contribution to the Hamiltonian matrix.
subroutine, public plus_u(qs_env, matrix_h, matrix_w)
Add the DFT+U contribution to the Hamiltonian matrix. Wrapper routine for all "+U" methods.
subroutine, public vh_1c_gg_integrals(qs_env, energy_hartree_1c, ecoul_1c, local_rho_set, para_env, tddft, local_rho_set_2nd, core_2nd)
Calculates one center GAPW Hartree energies and matrix elements Hartree potentials are input Takes po...
Utilities for hfx and admm methods.
subroutine, public hfx_admm_init(qs_env, calculate_forces, ext_xc_section)
...
subroutine, public hfx_ks_matrix(qs_env, matrix_ks, rho, energy, calculate_forces, just_energy, v_rspace_new, v_tau_rspace, ext_xc_section)
Add the hfx contributions to the Hamiltonian.
subroutine, public hfx_ks_matrix_kp(qs_env, matrix_ks, energy, calculate_forces)
Add the HFX K-point contribution to the real-space Hamiltonians.
Routines for a Kim-Gordon-like partitioning into molecular subunits.
subroutine, public kg_ekin_subset(qs_env, ks_matrix, ekin_mol, calc_force, do_kernel, pmat_ext)
Calculates the subsystem Hohenberg-Kohn kinetic energy and the forces.
Defines the basic variable types.
integer, parameter, public dp
integer, parameter, public default_string_length
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
Calculates integral matrices for LRIGPW method lri : local resolution of the identity.
subroutine, public v_int_ppl_energy(qs_env, lri_v_int, ecore_ppl_ri)
...
contains the types and subroutines for dealing with the lri_env lri : local resolution of the identit...
Collection of simple mathematical functions and subroutines.
logical function, public abnormal_value(a)
determines if a value is not normal (e.g. for Inf and Nan) based on IO to work also under optimizatio...
Interface to the message passing library MPI.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
functions related to the poisson solver on regular grids
integer, parameter, public pw_poisson_implicit
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Routines for image charge calculation within QM/MM.
subroutine, public calculate_image_pot(v_hartree_rspace, rho_hartree_gspace, energy, qmmm_env, qs_env)
determines coefficients by solving image_matrix*coeff=-pot_const by Gaussian elimination or in an ite...
subroutine, public integrate_potential_devga_rspace(potential, coeff, forces, qmmm_env, qs_env)
calculates the image forces on the MM atoms
subroutine, public add_image_pot_to_hartree_pot(v_hartree, v_metal, qs_env)
Add potential of metal (image charge pot) to Hartree Potential.
Defines CDFT control structures.
container for information about total charges on the grids
Calculation of the energies concerning the core charge distribution.
Calculation of Overlap and Hamiltonian matrices in DFTB.
subroutine, public build_dftb_ks_matrix(qs_env, calculate_forces, just_energy)
...
Calculates the energy contribution and the mo_derivative of a static periodic electric field.
subroutine, public qs_efield_berry_phase(qs_env, just_energy, calculate_forces)
...
Calculates the energy contribution and the mo_derivative of a static electric field (nonperiodic)
subroutine, public qs_efield_local_operator(qs_env, just_energy, calculate_forces)
...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, mimic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, sab_cneo, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, xcint_weights, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, rhoz_cneo_set, ecoul_1c, rho0_s_rs, rho0_s_gs, rhoz_cneo_s_rs, rhoz_cneo_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Get the QUICKSTEP environment.
subroutine, public prepare_gapw_den(qs_env, local_rho_set, do_rho0, kind_set_external, pw_env_sub)
...
Types needed for a for a Harris model calculation.
Harris method environment setup and handling.
subroutine, public harris_set_potentials(harris_env, vh_rspace, vxc_rspace)
...
Integrate single or product functions over a potential on a RS grid.
Set of routines to apply restraints to the KS hamiltonian.
subroutine, public qs_ks_s2_restraint(dft_control, qs_env, matrix_s, energy, calculate_forces, just_energy)
...
subroutine, public qs_ks_mulliken_restraint(energy, dft_control, just_energy, para_env, ks_matrix, matrix_s, rho, mulliken_order_p)
...
subroutine, public qs_ks_cdft_constraint(qs_env, auxbas_pw_pool, calculate_forces, cdft_control)
Apply a CDFT constraint.
routines that build the Kohn-Sham matrix contributions coming from local atomic densities
subroutine, public update_ks_atom(qs_env, ksmat, pmat, forces, tddft, rho_atom_external, kind_set_external, oce_external, sab_external, kscale, kintegral, kforce, fscale)
The correction to the KS matrix due to the GAPW local terms to the hartree and XC contributions is he...
routines that build the Kohn-Sham matrix (i.e calculate the coulomb and xc parts
subroutine, public evaluate_core_matrix_traces(qs_env, rho_ao_ext)
Calculates the traces of the core matrices and the density matrix.
subroutine, public qs_ks_update_qs_env(qs_env, calculate_forces, just_energy, print_active)
updates the Kohn Sham matrix of the given qs_env (facility method)
subroutine, public qs_ks_allocate_basics(qs_env, is_complex)
Allocate ks_matrix if necessary, take current overlap matrix as template.
subroutine, public calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density)
...
subroutine, public qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, print_active, ext_ks_matrix, ext_xc_section)
routine where the real calculations are made: the KS matrix is calculated
subroutine, public qmmm_calculate_energy(qs_env, rho, v_qmmm, qmmm_energy)
Computes the contribution to the total energy of the QM/MM electrostatic coupling.
subroutine, public qmmm_modify_hartree_pot(v_hartree, v_qmmm, scale)
Modify the hartree potential in order to include the QM/MM correction.
subroutine, public set_ks_env(ks_env, v_hartree_rspace, s_mstruct_changed, rho_changed, exc_accint, potential_changed, forces_up_to_date, complex_ks, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, kinetic, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_ks_im_kp, vppl, xcint_weights, rho_core, rho_nlcc, rho_nlcc_g, vee, neighbor_list_id, kpoints, sab_orb, sab_all, sac_ae, sac_ppl, sac_lri, sap_ppnl, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_vdw, sab_scp, sab_almo, sab_kp, sab_kp_nosym, sab_cneo, task_list, task_list_soft, subsys, dft_control, dbcsr_dist, distribution_2d, pw_env, para_env, blacs_env)
...
routines that build the Kohn-Sham matrix (i.e calculate the coulomb and xc parts
subroutine, public print_densities(qs_env, rho)
...
subroutine, public get_embed_potential_energy(qs_env, rho, v_rspace_embed, dft_control, embed_corr, just_energy)
...
subroutine, public low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, calculate_forces, auxbas_pw_pool)
do ROKS calculations yielding low spin states
subroutine, public sum_up_and_integrate(qs_env, ks_matrix, rho, my_rho, vppl_rspace, v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, cdft_control, calculate_forces)
Sum up all potentials defined on the grid and integrate.
subroutine, public print_detailed_energy(qs_env, dft_control, input, energy, mulliken_order_p)
Print detailed energies.
subroutine, public calculate_zmp_potential(qs_env, v_rspace_new, rho, exc)
Calculate the ZMP potential and energy as in Zhao, Morrison Parr PRA 50i, 2138 (1994) V_c^\lambda def...
subroutine, public calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, just_energy, calculate_forces, auxbas_pw_pool)
do sic calculations on the spin density
subroutine, public sic_explicit_orbitals(energy, qs_env, dft_control, poisson_env, just_energy, calculate_forces, auxbas_pw_pool)
do sic calculations on explicit orbitals
subroutine, public compute_matrix_vxc(qs_env, v_rspace, matrix_vxc)
compute matrix_vxc, defined via the potential created by qs_vxc_create ignores things like tau functi...
Definition and initialisation of the mo data type.
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
Define the neighbor list data types and the corresponding functionality.
subroutine, public integrate_vhg0_rspace(qs_env, v_rspace, para_env, calculate_forces, local_rho_set, local_rho_set_2nd, atener, kforce, my_pools, my_rs_descs)
...
superstucture that hold various representations of the density and keeps track of which ones are vali...
subroutine, public qs_rho_get(rho_struct, rho_ao, rho_ao_im, rho_ao_kp, rho_ao_im_kp, rho_r, drho_r, rho_g, drho_g, tau_r, tau_g, rho_r_valid, drho_r_valid, rho_g_valid, drho_g_valid, tau_r_valid, tau_g_valid, tot_rho_r, tot_rho_g, rho_r_sccs, soft_valid, complex_rho_ao)
returns info about the density described by this object. If some representation is not available an e...
Self-consistent continuum solvation (SCCS) model implementation.
subroutine, public sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs, h_stress)
Self-consistent continuum solvation (SCCS) model implementation.
routines that build the integrals of the Vxc potential calculated for the atomic density in the basis...
subroutine, public calculate_vxc_atom(qs_env, energy_only, exc1, adiabatic_rescale_factor, kind_set_external, rho_atom_set_external, xc_section_external)
...
subroutine, public qs_vxc_create(ks_env, rho_struct, xc_section, vxc_rho, vxc_tau, exc, just_energy, edisp, dispersion_env, adiabatic_rescale_factor, pw_env_external)
calculates and allocates the xc potential, already reducing it to the dependence on rho and the one o...
Utilities for rtp in combination with admm methods adapted routines from admm_method (author Manuel G...
subroutine, public rtp_admm_merge_ks_matrix(qs_env)
...
subroutine, public rtp_admm_calc_rho_aux(qs_env)
Compute the ADMM density matrix in case of rtp (complex MO's)
Calculation of the Fock matrix for SE methods.
subroutine, public build_se_fock_matrix(qs_env, calculate_forces, just_energy)
Construction of the Fock matrix for NDDO methods.
subroutine, public smeagol_shift_v_hartree(v_hartree_rspace, cell, hartreeleadsleft, hartreeleadsright, hartreeleadsbottom, vbias, zleft, zright, isexplicit_zright, isexplicit_bottom)
Align Hatree potential of semi-infinite leads to match bulk-transport calculation and apply external ...
subroutine, public calc_dipsurf_potential(qs_env, energy)
compute the surface dipole and the correction to the hartree potential
subroutine, public build_tblite_ks_matrix(qs_env, calculate_forces, just_energy, ext_ks_matrix)
...
Calculation of KS matrix in xTB Reference: Stefan Grimme, Christoph Bannwarth, Philip Shushkov JCTC 1...
subroutine, public build_xtb_ks_matrix(qs_env, calculate_forces, just_energy, ext_ks_matrix)
...
stores some data used in wavefunction fitting
Type defining parameters related to the simulation cell.
type of a logger, at the moment it contains just a print level starting at which level it should be l...
Contains information about kpoints.
stores all the informations relevant to an mpi environment
contained for different pw related things
environment for the poisson solver
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Container for information about total charges on the grids.
Contains information on the Harris method.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...
keeps the density in various representations, keeping track of which ones are valid.