43 dbcsr_type_no_symmetry
144#include "./base/base_uses.f90"
154 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'hfx_admm_utils'
166 LOGICAL,
INTENT(IN),
OPTIONAL :: calculate_forces
168 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_admm_init'
170 INTEGER :: handle, ispin, n_rep_hf, nao_aux_fit, &
171 natoms, nelectron, nmo
172 LOGICAL :: calc_forces, do_kpoints, &
173 s_mstruct_changed, use_virial
179 TYPE(
dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
182 TYPE(
mo_set_type),
DIMENSION(:),
POINTER :: mos, mos_aux_fit
184 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
189 CALL timeset(routinen, handle)
191 NULLIFY (admm_env, hfx_sections, mos, mos_aux_fit, para_env, virial, &
192 mo_coeff_aux_fit, xc_section, ks_env, dft_control, input, &
193 qs_kind_set, mo_coeff_b, aux_fit_fm_struct, blacs_env)
199 blacs_env=blacs_env, &
200 s_mstruct_changed=s_mstruct_changed, &
202 dft_control=dft_control, &
205 do_kpoints=do_kpoints)
207 calc_forces = .false.
208 IF (
PRESENT(calculate_forces)) calc_forces = .true.
214 cpabort(
"ADMM can handle only one HF section.")
216 IF (.NOT.
ASSOCIATED(admm_env))
THEN
218 CALL get_qs_env(qs_env, input=input, natom=natoms, qs_kind_set=qs_kind_set)
219 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=
"AUX_FIT")
220 CALL admm_env_create(admm_env, dft_control%admm_control, mos, para_env, natoms, nao_aux_fit)
227 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc) &
228 CALL init_admm_gapw(qs_env)
231 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
234 ALLOCATE (admm_env%rho_aux_fit)
236 ALLOCATE (admm_env%rho_aux_fit_buffer)
238 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
239 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
242 CALL admm_alloc_ks_matrices(admm_env, qs_env)
245 ALLOCATE (mos_aux_fit(dft_control%nspins))
246 DO ispin = 1, dft_control%nspins
247 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
251 nelectron=nelectron, &
252 n_el_f=real(nelectron,
dp), &
254 flexible_electron_count=dft_control%relax_multiplicity)
256 admm_env%mos_aux_fit => mos_aux_fit
258 DO ispin = 1, dft_control%nspins
261 nrow_global=nao_aux_fit, ncol_global=nmo)
262 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
263 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
264 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
265 name=
"qs_env%mo_aux_fit"//trim(adjustl(
cp_to_string(ispin))))
269 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
272 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
274 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
275 n=nmo, sym=dbcsr_type_no_symmetry)
279 IF (qs_env%requires_mo_derivs)
THEN
280 ALLOCATE (admm_env%mo_derivs_aux_fit(dft_control%nspins))
281 DO ispin = 1, dft_control%nspins
282 CALL get_mo_set(admm_env%mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit)
283 CALL cp_fm_create(admm_env%mo_derivs_aux_fit(ispin), mo_coeff_aux_fit%matrix_struct)
290 TYPE(
mo_set_type),
DIMENSION(:, :),
POINTER :: mos_aux_fit_kp
293 INTEGER :: ic, ik, ikk, is
294 INTEGER,
PARAMETER :: nwork1 = 4
295 LOGICAL :: use_real_wfn
297 NULLIFY (ao_mo_fm_pools_aux_fit, mos_aux_fit_kp)
299 CALL get_qs_env(qs_env=qs_env, kpoints=kpoints)
304 cpabort(
"Only ADMM_PURIFICATION_METHOD NONE implemeted for ADMM K-points")
307 cpabort(
"Only BASIS_PROJECTION and CHARGE_CONSTRAINED_PROJECTION implemented for KP")
308 IF (admm_env%do_admms .OR. admm_env%do_admmp .OR. admm_env%do_admmq)
THEN
309 IF (use_real_wfn) cpabort(
"Only KP-HFX ADMM2 is implemented with REAL wavefunctions")
314 CALL mpools_get(kpoints%mpools_aux_fit, ao_mo_fm_pools=ao_mo_fm_pools_aux_fit)
315 DO ik = 1,
SIZE(kpoints%kp_aux_env)
316 mos_aux_fit_kp => kpoints%kp_aux_env(ik)%kpoint_env%mos
317 ikk = kpoints%kp_range(1) + ik - 1
318 DO ispin = 1,
SIZE(mos_aux_fit_kp, 2)
319 DO ic = 1,
SIZE(mos_aux_fit_kp, 1)
320 CALL get_mo_set(mos_aux_fit_kp(ic, ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
323 cpassert(.NOT.
ASSOCIATED(mo_coeff_b))
325 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
327 fm_pool=ao_mo_fm_pools_aux_fit(ispin)%pool, &
335 ALLOCATE (admm_env%scf_work_aux_fit(nwork1))
339 nrow_global=nao_aux_fit, &
340 ncol_global=nao_aux_fit)
344 matrix_struct=ao_ao_fm_struct, &
345 name=
"SCF-WORK_MATRIX-AUX-"//trim(adjustl(
cp_to_string(is))))
355 ELSE IF (s_mstruct_changed)
THEN
356 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
357 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
358 CALL admm_alloc_ks_matrices(admm_env, qs_env)
359 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
363 IF (admm_env%do_gapw .AND. dft_control%do_admm_dm)
THEN
364 cpabort(
"GAPW ADMM not implemented for MCWEENY or NONE_DM purification.")
369 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
370 IF (use_virial .AND. admm_env%do_admms .AND. dft_control%nspins == 2)
THEN
371 cpabort(
"ADMMS stress tensor is only available for closed-shell systems")
373 IF (use_virial .AND. admm_env%do_admmp .AND. dft_control%nspins == 2)
THEN
374 cpabort(
"ADMMP stress tensor is only available for closed-shell systems")
377 IF (dft_control%do_admm_dm .AND. .NOT.
ASSOCIATED(admm_env%admm_dm))
THEN
378 CALL admm_dm_create(admm_env%admm_dm, dft_control%admm_control, nspins=dft_control%nspins, natoms=natoms)
381 CALL timestop(handle)
398 TYPE(qs_environment_type),
POINTER :: qs_env
399 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos
400 TYPE(admm_type),
POINTER :: admm_env
401 TYPE(admm_control_type),
POINTER :: admm_control
402 CHARACTER(LEN=*) :: basis_type
404 CHARACTER(LEN=*),
PARAMETER :: routinen =
'aux_admm_init'
406 INTEGER :: handle, ispin, nao_aux_fit, natoms, &
408 LOGICAL :: do_kpoints
410 TYPE(cp_blacs_env_type),
POINTER :: blacs_env
411 TYPE(cp_fm_struct_type),
POINTER :: aux_fit_fm_struct
412 TYPE(cp_fm_type),
POINTER :: mo_coeff_aux_fit
413 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
414 TYPE(dbcsr_type),
POINTER :: mo_coeff_b
415 TYPE(dft_control_type),
POINTER :: dft_control
416 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos_aux_fit
417 TYPE(mp_para_env_type),
POINTER :: para_env
418 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
419 TYPE(qs_ks_env_type),
POINTER :: ks_env
421 CALL timeset(routinen, handle)
423 cpassert(.NOT.
ASSOCIATED(admm_env))
425 CALL get_qs_env(qs_env, &
427 blacs_env=blacs_env, &
429 dft_control=dft_control, &
430 do_kpoints=do_kpoints)
432 cpassert(.NOT. do_kpoints)
433 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc)
THEN
434 cpabort(
"AUX ADMM not possible with GAPW")
438 CALL get_qs_env(qs_env, natom=natoms, qs_kind_set=qs_kind_set)
439 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=basis_type)
441 CALL admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit)
443 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
445 CALL admm_init_hamiltonians(admm_env, qs_env, basis_type)
446 NULLIFY (admm_env%rho_aux_fit, admm_env%rho_aux_fit_buffer)
448 CALL admm_alloc_ks_matrices(admm_env, qs_env)
450 ALLOCATE (mos_aux_fit(dft_control%nspins))
451 DO ispin = 1, dft_control%nspins
452 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
453 CALL allocate_mo_set(mo_set=mos_aux_fit(ispin), nao=nao_aux_fit, nmo=nmo, &
454 nelectron=nelectron, n_el_f=real(nelectron, dp), &
455 maxocc=maxocc, flexible_electron_count=0.0_dp)
457 admm_env%mos_aux_fit => mos_aux_fit
459 DO ispin = 1, dft_control%nspins
460 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo)
461 CALL cp_fm_struct_create(aux_fit_fm_struct, context=blacs_env, para_env=para_env, &
462 nrow_global=nao_aux_fit, ncol_global=nmo)
463 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
464 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
465 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
466 name=
"mo_aux_fit"//trim(adjustl(cp_to_string(ispin))))
468 CALL cp_fm_struct_release(aux_fit_fm_struct)
470 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
471 CALL cp_fm_get_info(mos_aux_fit(ispin)%mo_coeff, ncol_global=nmo)
472 CALL dbcsr_init_p(mos_aux_fit(ispin)%mo_coeff_b)
473 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
474 CALL cp_dbcsr_m_by_n_from_row_template(mos_aux_fit(ispin)%mo_coeff_b, &
475 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
476 n=nmo, sym=dbcsr_type_no_symmetry)
480 CALL timestop(handle)
488 SUBROUTINE init_admm_gapw(qs_env)
490 TYPE(qs_environment_type),
POINTER :: qs_env
492 INTEGER :: ikind, nkind
493 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
494 TYPE(admm_type),
POINTER :: admm_env
495 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
496 TYPE(dft_control_type),
POINTER :: dft_control
497 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis, aux_fit_soft_basis, &
498 orb_basis, soft_basis
499 TYPE(mp_para_env_type),
POINTER :: para_env
500 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
501 TYPE(section_vals_type),
POINTER :: input
503 NULLIFY (admm_kind_set, aux_fit_basis, atomic_kind_set, aux_fit_soft_basis, &
504 dft_control, input, orb_basis, para_env, qs_kind_set, soft_basis)
506 CALL get_qs_env(qs_env, admm_env=admm_env, &
507 atomic_kind_set=atomic_kind_set, &
508 dft_control=dft_control, &
511 qs_kind_set=qs_kind_set)
513 admm_env%do_gapw = .true.
514 ALLOCATE (admm_env%admm_gapw_env)
515 admm_gapw_env => admm_env%admm_gapw_env
516 NULLIFY (admm_gapw_env%local_rho_set)
517 NULLIFY (admm_gapw_env%admm_kind_set)
518 NULLIFY (admm_gapw_env%task_list)
521 nkind =
SIZE(qs_kind_set)
522 ALLOCATE (admm_gapw_env%admm_kind_set(nkind))
523 admm_kind_set => admm_gapw_env%admm_kind_set
528 admm_kind_set(ikind)%name = qs_kind_set(ikind)%name
529 admm_kind_set(ikind)%element_symbol = qs_kind_set(ikind)%element_symbol
530 admm_kind_set(ikind)%natom = qs_kind_set(ikind)%natom
531 admm_kind_set(ikind)%hard_radius = qs_kind_set(ikind)%hard_radius
532 admm_kind_set(ikind)%max_rad_local = qs_kind_set(ikind)%max_rad_local
533 admm_kind_set(ikind)%gpw_type_forced = qs_kind_set(ikind)%gpw_type_forced
534 admm_kind_set(ikind)%ngrid_rad = qs_kind_set(ikind)%ngrid_rad
535 admm_kind_set(ikind)%ngrid_ang = qs_kind_set(ikind)%ngrid_ang
538 IF (
ASSOCIATED(qs_kind_set(ikind)%all_potential))
THEN
539 CALL copy_potential(qs_kind_set(ikind)%all_potential, admm_kind_set(ikind)%all_potential)
541 IF (
ASSOCIATED(qs_kind_set(ikind)%gth_potential))
THEN
542 CALL copy_potential(qs_kind_set(ikind)%gth_potential, admm_kind_set(ikind)%gth_potential)
544 IF (
ASSOCIATED(qs_kind_set(ikind)%sgp_potential))
THEN
545 CALL copy_potential(qs_kind_set(ikind)%sgp_potential, admm_kind_set(ikind)%sgp_potential)
549 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
550 CALL copy_gto_basis_set(aux_fit_basis, orb_basis)
551 CALL add_basis_set_to_container(admm_kind_set(ikind)%basis_sets, orb_basis,
"ORB")
555 CALL init_gapw_basis_set(admm_kind_set, dft_control%qs_control, input, &
556 modify_qs_control=.false.)
559 CALL init_interaction_radii(dft_control%qs_control, admm_kind_set)
562 CALL local_rho_set_create(admm_gapw_env%local_rho_set)
563 CALL init_rho_atom(admm_gapw_env%local_rho_set%rho_atom_set, &
564 atomic_kind_set, admm_kind_set, dft_control, para_env)
567 CALL init_gapw_nlcc(admm_kind_set)
571 NULLIFY (aux_fit_soft_basis)
572 CALL get_qs_kind(admm_kind_set(ikind), basis_set=soft_basis, basis_type=
"ORB_SOFT")
573 CALL copy_gto_basis_set(soft_basis, aux_fit_soft_basis)
574 CALL add_basis_set_to_container(qs_kind_set(ikind)%basis_sets, aux_fit_soft_basis,
"AUX_FIT_SOFT")
577 END SUBROUTINE init_admm_gapw
585 SUBROUTINE admm_init_hamiltonians(admm_env, qs_env, aux_basis_type)
587 TYPE(admm_type),
POINTER :: admm_env
588 TYPE(qs_environment_type),
POINTER :: qs_env
589 CHARACTER(len=*) :: aux_basis_type
591 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_init_hamiltonians'
593 INTEGER :: handle, hfx_pot, ikind, nkind
594 LOGICAL :: do_kpoints, mic, molecule_only
595 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_fit_present, orb_present
596 REAL(dp) :: eps_schwarz, omega, pdist, roperator, &
598 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_fit_radius, orb_radius
599 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
600 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
601 TYPE(cell_type),
POINTER :: cell
602 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp, &
603 matrix_s_aux_fit_vs_orb_kp
604 TYPE(dft_control_type),
POINTER :: dft_control
605 TYPE(distribution_1d_type),
POINTER :: distribution_1d
606 TYPE(distribution_2d_type),
POINTER :: distribution_2d
607 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis_set, orb_basis_set
608 TYPE(kpoint_type),
POINTER :: kpoints
609 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
610 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
611 TYPE(mp_para_env_type),
POINTER :: para_env
612 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
613 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
614 TYPE(qs_ks_env_type),
POINTER :: ks_env
615 TYPE(section_vals_type),
POINTER :: hfx_sections, neighbor_list_section
617 NULLIFY (particle_set, cell, kpoints, distribution_1d, distribution_2d, molecule_set, &
618 atomic_kind_set, dft_control, neighbor_list_section, aux_fit_basis_set, orb_basis_set, &
619 ks_env, para_env, qs_kind_set, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb_kp)
621 CALL timeset(routinen, handle)
623 CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, cell=cell, kpoints=kpoints, &
624 local_particles=distribution_1d, distribution_2d=distribution_2d, &
625 molecule_set=molecule_set, atomic_kind_set=atomic_kind_set, do_kpoints=do_kpoints, &
626 dft_control=dft_control, para_env=para_env, qs_kind_set=qs_kind_set)
627 ALLOCATE (orb_present(nkind), aux_fit_present(nkind))
628 ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), pair_radius(nkind, nkind))
629 aux_fit_radius(:) = 0.0_dp
631 molecule_only = .false.
632 IF (dft_control%qs_control%do_kg) molecule_only = .true.
634 IF (kpoints%nkp > 0)
THEN
636 ELSEIF (dft_control%qs_control%semi_empirical)
THEN
640 pdist = dft_control%qs_control%pairlist_radius
642 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
643 neighbor_list_section => section_vals_get_subs_vals(qs_env%input,
"DFT%PRINT%NEIGHBOR_LISTS")
645 ALLOCATE (atom2d(nkind))
646 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
647 molecule_set, molecule_only, particle_set=particle_set)
650 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type=
"ORB")
651 IF (
ASSOCIATED(orb_basis_set))
THEN
652 orb_present(ikind) = .true.
653 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
655 orb_present(ikind) = .false.
658 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type=aux_basis_type)
659 IF (
ASSOCIATED(aux_fit_basis_set))
THEN
660 aux_fit_present(ikind) = .true.
661 CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
663 aux_fit_present(ikind) = .false.
667 IF (pdist < 0.0_dp)
THEN
668 pdist = max(plane_distance(1, 0, 0, cell), &
669 plane_distance(0, 1, 0, cell), &
670 plane_distance(0, 0, 1, cell))
677 hfx_sections => section_vals_get_subs_vals(qs_env%input,
"DFT%XC%HF")
678 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
680 SELECT CASE (hfx_pot)
681 CASE (do_potential_id)
683 CASE (do_potential_truncated)
684 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
685 CASE (do_potential_short)
686 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%OMEGA", r_val=omega)
687 CALL section_vals_val_get(hfx_sections,
"SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
688 CALL erfc_cutoff(eps_schwarz, omega, roperator)
690 cpabort(
"HFX potential not available for K-points (NYI)")
694 CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, pair_radius, pdist)
695 pair_radius = pair_radius + cutoff_screen_factor*roperator
696 CALL build_neighbor_lists(admm_env%sab_aux_fit, particle_set, atom2d, cell, pair_radius, &
697 mic=mic, molecular=molecule_only, subcells=subcells, nlname=
"sab_aux_fit")
698 CALL build_neighbor_lists(admm_env%sab_aux_fit_asymm, particle_set, atom2d, cell, pair_radius, &
699 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
700 nlname=
"sab_aux_fit_asymm")
701 CALL pair_radius_setup(aux_fit_present, orb_present, aux_fit_radius, orb_radius, pair_radius)
702 CALL build_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, atom2d, cell, pair_radius, &
703 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
704 nlname=
"sab_aux_fit_vs_orb")
706 CALL write_neighbor_lists(admm_env%sab_aux_fit, particle_set, cell, para_env, neighbor_list_section, &
707 "/SAB_AUX_FIT",
"sab_aux_fit",
"AUX_FIT_ORBITAL AUX_FIT_ORBITAL")
708 CALL write_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, cell, para_env, neighbor_list_section, &
709 "/SAB_AUX_FIT_VS_ORB",
"sab_aux_fit_vs_orb",
"ORBITAL AUX_FIT_ORBITAL")
711 CALL atom2d_cleanup(atom2d)
714 CALL get_qs_env(qs_env, ks_env=ks_env)
716 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit)
717 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_kp, &
718 matrix_name=
"AUX_FIT_OVERLAP", &
719 basis_type_a=aux_basis_type, &
720 basis_type_b=aux_basis_type, &
721 sab_nl=admm_env%sab_aux_fit)
722 CALL set_2d_pointer(admm_env%matrix_s_aux_fit, matrix_s_aux_fit_kp)
723 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit_vs_orb)
724 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_vs_orb_kp, &
725 matrix_name=
"MIXED_OVERLAP", &
726 basis_type_a=aux_basis_type, &
727 basis_type_b=
"ORB", &
728 sab_nl=admm_env%sab_aux_fit_vs_orb)
729 CALL set_2d_pointer(admm_env%matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp)
731 CALL timestop(handle)
733 END SUBROUTINE admm_init_hamiltonians
741 SUBROUTINE admm_update_s_mstruct(admm_env, qs_env, aux_basis_type)
743 TYPE(admm_type),
POINTER :: admm_env
744 TYPE(qs_environment_type),
POINTER :: qs_env
745 CHARACTER(len=*) :: aux_basis_type
747 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_update_s_mstruct'
750 LOGICAL :: skip_load_balance_distributed
751 TYPE(dft_control_type),
POINTER :: dft_control
752 TYPE(qs_ks_env_type),
POINTER :: ks_env
754 NULLIFY (ks_env, dft_control)
756 CALL timeset(routinen, handle)
758 CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control)
761 skip_load_balance_distributed = dft_control%qs_control%skip_load_balance_distributed
762 IF (
ASSOCIATED(admm_env%task_list_aux_fit))
CALL deallocate_task_list(admm_env%task_list_aux_fit)
763 CALL allocate_task_list(admm_env%task_list_aux_fit)
764 CALL generate_qs_task_list(ks_env, admm_env%task_list_aux_fit, &
765 reorder_rs_grid_ranks=.false., soft_valid=.false., &
766 basis_type=aux_basis_type, &
767 skip_load_balance_distributed=skip_load_balance_distributed, &
768 sab_orb_external=admm_env%sab_aux_fit)
771 CALL qs_rho_rebuild(admm_env%rho_aux_fit, qs_env=qs_env, admm=.true.)
772 CALL qs_rho_rebuild(admm_env%rho_aux_fit_buffer, qs_env=qs_env, admm=.true.)
774 CALL timestop(handle)
776 END SUBROUTINE admm_update_s_mstruct
782 SUBROUTINE update_admm_gapw(qs_env)
784 TYPE(qs_environment_type),
POINTER :: qs_env
786 CHARACTER(len=*),
PARAMETER :: routinen =
'update_admm_gapw'
788 INTEGER :: handle, ikind, nkind
790 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_present, oce_present
792 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_radius, oce_radius
793 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
794 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
795 TYPE(admm_type),
POINTER :: admm_env
796 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
797 TYPE(cell_type),
POINTER :: cell
798 TYPE(dft_control_type),
POINTER :: dft_control
799 TYPE(distribution_1d_type),
POINTER :: distribution_1d
800 TYPE(distribution_2d_type),
POINTER :: distribution_2d
801 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis
802 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
803 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
804 TYPE(neighbor_list_set_p_type),
DIMENSION(:), &
806 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
807 TYPE(paw_proj_set_type),
POINTER :: paw_proj
808 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
809 TYPE(qs_ks_env_type),
POINTER :: ks_env
811 NULLIFY (ks_env, qs_kind_set, admm_kind_set, aux_fit_basis, cell, distribution_1d)
812 NULLIFY (distribution_2d, paw_proj, particle_set, molecule_set, admm_env, admm_gapw_env)
813 NULLIFY (dft_control, atomic_kind_set, sap_oce)
815 CALL timeset(routinen, handle)
817 CALL get_qs_env(qs_env, ks_env=ks_env, qs_kind_set=qs_kind_set, admm_env=admm_env, &
818 dft_control=dft_control)
819 admm_gapw_env => admm_env%admm_gapw_env
820 admm_kind_set => admm_gapw_env%admm_kind_set
821 nkind =
SIZE(qs_kind_set)
824 IF (
ASSOCIATED(admm_gapw_env%task_list))
CALL deallocate_task_list(admm_gapw_env%task_list)
825 CALL allocate_task_list(admm_gapw_env%task_list)
828 CALL generate_qs_task_list(ks_env, admm_gapw_env%task_list, reorder_rs_grid_ranks=.false., &
829 soft_valid=.false., basis_type=
"AUX_FIT_SOFT", &
830 skip_load_balance_distributed=dft_control%qs_control%skip_load_balance_distributed, &
831 sab_orb_external=admm_env%sab_aux_fit)
835 ALLOCATE (aux_present(nkind), oce_present(nkind))
836 aux_present = .false.; oce_present = .false.
837 ALLOCATE (aux_radius(nkind), oce_radius(nkind))
838 aux_radius = 0.0_dp; oce_radius = 0.0_dp
841 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
842 IF (
ASSOCIATED(aux_fit_basis))
THEN
843 aux_present(ikind) = .true.
844 CALL get_gto_basis_set(aux_fit_basis, kind_radius=aux_radius(ikind))
848 CALL get_qs_kind(admm_kind_set(ikind), paw_atom=paw_atom, paw_proj_set=paw_proj)
850 oce_present(ikind) = .true.
851 CALL get_paw_proj_set(paw_proj, rcprj=oce_radius(ikind))
855 ALLOCATE (pair_radius(nkind, nkind))
857 CALL pair_radius_setup(aux_present, oce_present, aux_radius, oce_radius, pair_radius)
859 CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, cell=cell, &
860 distribution_2d=distribution_2d, local_particles=distribution_1d, &
861 particle_set=particle_set, molecule_set=molecule_set)
862 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
864 ALLOCATE (atom2d(nkind))
865 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
866 molecule_set, .false., particle_set)
867 CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
868 subcells=subcells, operator_type=
"ABBA", nlname=
"AUX_PAW-PRJ")
869 CALL atom2d_cleanup(atom2d)
872 CALL create_oce_set(admm_gapw_env%oce)
873 CALL allocate_oce_set(admm_gapw_env%oce, nkind)
876 CALL build_oce_matrices(admm_gapw_env%oce%intac, calculate_forces=.true., nder=1, &
877 qs_kind_set=admm_kind_set, particle_set=particle_set, &
878 sap_oce=sap_oce, eps_fit=dft_control%qs_control%gapw_control%eps_fit)
880 CALL release_neighbor_list_sets(sap_oce)
882 CALL timestop(handle)
884 END SUBROUTINE update_admm_gapw
891 SUBROUTINE admm_alloc_ks_matrices(admm_env, qs_env)
893 TYPE(admm_type),
POINTER :: admm_env
894 TYPE(qs_environment_type),
POINTER :: qs_env
896 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_alloc_ks_matrices'
898 INTEGER :: handle, ic, ispin
899 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_aux_fit_dft_kp, &
900 matrix_ks_aux_fit_hfx_kp, &
901 matrix_ks_aux_fit_kp, &
903 TYPE(dft_control_type),
POINTER :: dft_control
905 NULLIFY (dft_control, matrix_s_aux_fit_kp, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp)
907 CALL timeset(routinen, handle)
909 CALL get_qs_env(qs_env, dft_control=dft_control)
910 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
912 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit)
913 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_dft)
914 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_hfx)
916 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_kp, dft_control%nspins, dft_control%nimages)
917 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_dft_kp, dft_control%nspins, dft_control%nimages)
918 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_hfx_kp, dft_control%nspins, dft_control%nimages)
920 DO ispin = 1, dft_control%nspins
921 DO ic = 1, dft_control%nimages
922 ALLOCATE (matrix_ks_aux_fit_kp(ispin, ic)%matrix)
923 CALL dbcsr_create(matrix_ks_aux_fit_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, ic)%matrix, &
924 name=
"KOHN-SHAM_MATRIX for ADMM")
925 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
926 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, ic)%matrix, 0.0_dp)
928 ALLOCATE (matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix)
929 CALL dbcsr_create(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
930 name=
"KOHN-SHAM_MATRIX for ADMM")
931 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
932 CALL dbcsr_set(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, 0.0_dp)
934 ALLOCATE (matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix)
935 CALL dbcsr_create(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
936 name=
"KOHN-SHAM_MATRIX for ADMM")
937 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
938 CALL dbcsr_set(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, 0.0_dp)
942 CALL set_admm_env(admm_env, &
943 matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
944 matrix_ks_aux_fit_dft_kp=matrix_ks_aux_fit_dft_kp, &
945 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
947 CALL timestop(handle)
949 END SUBROUTINE admm_alloc_ks_matrices
959 TYPE(qs_environment_type),
POINTER :: qs_env
960 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
961 TYPE(qs_energy_type),
POINTER :: energy
962 LOGICAL,
INTENT(in) :: calculate_forces
964 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix_kp'
966 INTEGER :: handle, img, irep, ispin, n_rep_hf, &
968 LOGICAL :: do_adiabatic_rescaling, &
969 s_mstruct_changed, use_virial
970 REAL(dp) :: eh1, ehfx, eold
971 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
972 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_aux_fit_im, matrix_ks_im
973 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_ks_aux_fit_hfx_kp, &
974 matrix_ks_aux_fit_kp, matrix_ks_orb, &
976 TYPE(dft_control_type),
POINTER :: dft_control
977 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
978 TYPE(mp_para_env_type),
POINTER :: para_env
979 TYPE(pw_env_type),
POINTER :: pw_env
980 TYPE(pw_poisson_type),
POINTER :: poisson_env
981 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
982 TYPE(qs_rho_type),
POINTER :: rho_orb
983 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
985 TYPE(virial_type),
POINTER :: virial
987 CALL timeset(routinen, handle)
989 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
990 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
991 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_ks_aux_fit_kp, &
992 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx_kp)
994 CALL get_qs_env(qs_env=qs_env, &
995 dft_control=dft_control, &
997 matrix_h_kp=matrix_h, &
1001 matrix_ks_im=matrix_ks_im, &
1002 s_mstruct_changed=s_mstruct_changed, &
1006 IF (qs_env%run_rtp) cpabort(
"No RTP implementation with K-points HFX")
1009 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1010 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1011 IF (do_adiabatic_rescaling) cpabort(
"No adiabatic rescaling implementation with K-points HFX")
1013 IF (dft_control%do_admm)
THEN
1014 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
1015 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, &
1016 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
1019 nspins = dft_control%nspins
1020 nimages = dft_control%nimages
1022 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1023 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1025 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1026 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1029 IF (dft_control%do_admm)
THEN
1030 DO ispin = 1, nspins
1032 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, img)%matrix, 0.0_dp)
1036 DO ispin = 1, nspins
1038 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1042 ALLOCATE (hf_energy(n_rep_hf))
1046 DO irep = 1, n_rep_hf
1049 IF (dft_control%do_admm)
THEN
1050 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_orb, rho_aux_fit=rho_orb)
1052 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1054 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1059 IF (.NOT. x_data(irep, 1)%do_hfx_ri)
THEN
1060 cpabort(
"Only RI-HFX is implemented for K-points")
1063 CALL hfx_ri_update_ks_kp(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1064 rho_ao_orb, s_mstruct_changed, nspins, &
1065 x_data(irep, 1)%general_parameter%fraction)
1067 IF (calculate_forces)
THEN
1069 IF (dft_control%do_admm)
THEN
1070 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1073 CALL hfx_ri_update_forces_kp(qs_env, x_data(irep, 1)%ri_data, nspins, &
1074 x_data(irep, 1)%general_parameter%fraction, &
1075 rho_ao_orb, use_virial=use_virial)
1077 IF (dft_control%do_admm)
THEN
1078 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1082 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
1084 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1093 DO ispin = 1, nspins
1095 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1099 IF (use_virial .AND. calculate_forces)
THEN
1100 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1101 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1102 virial%pv_calculate = .false.
1106 IF (dft_control%do_admm)
THEN
1107 DO ispin = 1, nspins
1109 CALL dbcsr_add(matrix_ks_aux_fit_hfx_kp(ispin, img)%matrix, matrix_ks_aux_fit_kp(ispin, img)%matrix, &
1115 CALL timestop(handle)
1135 just_energy, v_rspace_new, v_tau_rspace)
1137 TYPE(qs_environment_type),
POINTER :: qs_env
1138 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
1139 TYPE(qs_rho_type),
POINTER :: rho
1140 TYPE(qs_energy_type),
POINTER :: energy
1141 LOGICAL,
INTENT(in) :: calculate_forces, just_energy
1142 TYPE(pw_r3d_rs_type),
DIMENSION(:),
POINTER :: v_rspace_new, v_tau_rspace
1144 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix'
1146 INTEGER :: handle, img, irep, ispin, mspin, &
1147 n_rep_hf, nimages, ns, nspins
1148 LOGICAL :: distribute_fock_matrix, &
1149 do_adiabatic_rescaling, &
1150 hfx_treat_lsd_in_core, &
1151 s_mstruct_changed, use_virial
1152 REAL(dp) :: eh1, ehfx, ehfxrt, eold
1153 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
1154 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_1d, matrix_ks_aux_fit, &
1155 matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_im, matrix_ks_im, rho_ao_1d, rho_ao_resp
1156 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_h_im, matrix_ks_orb, &
1158 TYPE(dft_control_type),
POINTER :: dft_control
1159 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1160 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mo_array
1161 TYPE(mp_para_env_type),
POINTER :: para_env
1162 TYPE(pw_env_type),
POINTER :: pw_env
1163 TYPE(pw_poisson_type),
POINTER :: poisson_env
1164 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
1165 TYPE(qs_rho_type),
POINTER :: rho_orb
1166 TYPE(rt_prop_type),
POINTER :: rtp
1167 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
1169 TYPE(virial_type),
POINTER :: virial
1171 CALL timeset(routinen, handle)
1173 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
1174 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
1175 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_h_im, matrix_ks_aux_fit, &
1176 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx)
1178 CALL get_qs_env(qs_env=qs_env, &
1179 dft_control=dft_control, &
1181 matrix_h_kp=matrix_h, &
1182 matrix_h_im_kp=matrix_h_im, &
1183 para_env=para_env, &
1186 matrix_ks_im=matrix_ks_im, &
1187 s_mstruct_changed=s_mstruct_changed, &
1190 IF (dft_control%do_admm)
THEN
1191 CALL get_admm_env(qs_env%admm_env, mos_aux_fit=mo_array, matrix_ks_aux_fit=matrix_ks_aux_fit, &
1192 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx=matrix_ks_aux_fit_hfx)
1194 CALL get_qs_env(qs_env=qs_env, mos=mo_array)
1197 nspins = dft_control%nspins
1198 nimages = dft_control%nimages
1200 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1202 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1204 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1205 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1206 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
1208 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1209 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1212 IF (dft_control%do_admm)
THEN
1213 DO ispin = 1, nspins
1214 CALL dbcsr_set(matrix_ks_aux_fit(ispin)%matrix, 0.0_dp)
1217 DO ispin = 1, nspins
1219 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1223 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1225 ALLOCATE (hf_energy(n_rep_hf))
1229 DO irep = 1, n_rep_hf
1233 IF (do_adiabatic_rescaling .AND. hfx_treat_lsd_in_core) &
1234 cpabort(
"HFX_TREAT_LSD_IN_CORE not implemented for adiabatically rescaled hybrids")
1236 distribute_fock_matrix = .NOT. do_adiabatic_rescaling
1239 IF (hfx_treat_lsd_in_core) mspin = nspins
1242 IF (dft_control%do_admm)
THEN
1243 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit=matrix_ks_1d, rho_aux_fit=rho_orb)
1244 ns =
SIZE(matrix_ks_1d)
1245 matrix_ks_orb(1:ns, 1:1) => matrix_ks_1d(1:ns)
1247 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1249 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1253 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1255 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1256 mo_array, rho_ao_orb, &
1257 s_mstruct_changed, nspins, &
1258 x_data(irep, 1)%general_parameter%fraction)
1259 IF (dft_control%do_admm)
THEN
1261 DO ispin = 1, nspins
1262 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1263 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1270 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1271 para_env, s_mstruct_changed, irep, distribute_fock_matrix, &
1277 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1279 IF (dft_control%do_admm)
THEN
1280 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1282 NULLIFY (rho_ao_resp)
1284 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1286 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1287 x_data(irep, 1)%general_parameter%fraction, &
1288 rho_ao=rho_ao_orb, mos=mo_array, &
1289 rho_ao_resp=rho_ao_resp, &
1290 use_virial=use_virial)
1294 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1295 para_env, irep, use_virial)
1300 IF (dft_control%do_admm)
THEN
1301 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1306 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx
1310 IF (qs_env%run_rtp)
THEN
1312 CALL get_qs_env(qs_env=qs_env, rtp=rtp)
1313 DO ispin = 1, nspins
1314 CALL dbcsr_set(matrix_ks_im(ispin)%matrix, 0.0_dp)
1316 IF (dft_control%do_admm)
THEN
1318 ns =
SIZE(matrix_ks_aux_fit_im)
1319 matrix_ks_orb(1:ns, 1:1) => matrix_ks_aux_fit_im(1:ns)
1320 DO ispin = 1, nspins
1321 CALL dbcsr_set(matrix_ks_aux_fit_im(ispin)%matrix, 0.0_dp)
1325 ns =
SIZE(matrix_ks_im)
1326 matrix_ks_orb(1:ns, 1:1) => matrix_ks_im(1:ns)
1329 CALL qs_rho_get(rho_orb, rho_ao_im=rho_ao_1d)
1330 ns =
SIZE(rho_ao_1d)
1331 rho_ao_orb(1:ns, 1:1) => rho_ao_1d(1:ns)
1335 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1336 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1337 mo_array, rho_ao_orb, &
1339 x_data(irep, 1)%general_parameter%fraction)
1340 IF (dft_control%do_admm)
THEN
1342 DO ispin = 1, nspins
1343 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1344 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1350 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1351 para_env, .false., irep, distribute_fock_matrix, &
1353 ehfxrt = ehfxrt + eh1
1357 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1358 NULLIFY (rho_ao_resp)
1360 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1362 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1363 x_data(irep, 1)%general_parameter%fraction, &
1364 rho_ao=rho_ao_orb, mos=mo_array, &
1365 use_virial=use_virial)
1368 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1369 para_env, irep, use_virial)
1374 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx + ehfxrt
1376 IF (dft_control%rtp_control%velocity_gauge)
THEN
1377 cpassert(
ASSOCIATED(matrix_h_im))
1378 DO ispin = 1, nspins
1379 CALL dbcsr_add(matrix_ks_im(ispin)%matrix, matrix_h_im(1, 1)%matrix, &
1386 IF (.NOT. qs_env%run_rtp)
THEN
1387 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1388 poisson_env=poisson_env)
1390 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1397 energy%ex = ehfx + ehfxrt
1400 DO ispin = 1, nspins
1402 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1406 IF (use_virial .AND. calculate_forces)
THEN
1407 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1408 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1409 virial%pv_calculate = .false.
1413 IF (do_adiabatic_rescaling)
THEN
1414 CALL rescale_xc_potential(qs_env, matrix_ks, rho, energy, v_rspace_new, v_tau_rspace, &
1415 hf_energy, just_energy, calculate_forces, use_virial)
1419 IF (dft_control%do_admm)
THEN
1420 DO ispin = 1, nspins
1421 CALL dbcsr_add(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_aux_fit(ispin)%matrix, &
1426 CALL timestop(handle)
1460 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1461 TYPE(section_vals_type),
POINTER :: xc_section
1462 TYPE(admm_type),
POINTER :: admm_env
1464 LOGICAL,
PARAMETER :: debug_functional = .false.
1465#if defined (__LIBXC)
1466 REAL(kind=dp),
PARAMETER :: x_factor_c = 0.930525736349100025_dp
1469 CHARACTER(LEN=20) :: name_x_func
1470 INTEGER :: hfx_potential_type, ifun, iounit, nfun
1471 LOGICAL :: funct_found
1472 REAL(dp) :: cutoff_radius, hfx_fraction, omega, &
1473 scale_coulomb, scale_longrange, scale_x
1474 TYPE(cp_logger_type),
POINTER :: logger
1475 TYPE(section_vals_type),
POINTER :: xc_fun, xc_fun_section
1477 logger => cp_get_default_logger()
1478 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
1481 CALL section_vals_duplicate(xc_section, admm_env%xc_section_aux)
1482 CALL section_vals_duplicate(xc_section, admm_env%xc_section_primary)
1485 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
1488 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1489 i_val=xc_funct_no_shortcut)
1496 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1497 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1503 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=1)
1504 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1505 CALL section_vals_remove_values(xc_fun)
1508 IF (
ASSOCIATED(x_data))
THEN
1509 hfx_potential_type = x_data(1, 1)%potential_parameter%potential_type
1510 hfx_fraction = x_data(1, 1)%general_parameter%fraction
1512 cpwarn(
"ADMM requested without a DFT%XC%HF section. It will be ignored for the SCF.")
1513 admm_env%aux_exch_func = do_admm_aux_exch_func_none
1517 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_none)
THEN
1518 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1520 hfx_fraction = 0.0_dp
1521 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default)
THEN
1524 SELECT CASE (hfx_potential_type)
1525 CASE (do_potential_coulomb)
1526 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1528 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1529 r_val=-hfx_fraction)
1530 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1532 CASE (do_potential_short)
1533 omega = x_data(1, 1)%potential_parameter%omega
1534 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1536 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1537 r_val=-hfx_fraction)
1538 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1540 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1542 CASE (do_potential_truncated)
1543 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1544 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1546 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1548 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1549 r_val=cutoff_radius)
1550 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1552 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1554 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1555 r_val=-hfx_fraction)
1556 CASE (do_potential_long)
1557 omega = x_data(1, 1)%potential_parameter%omega
1558 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1560 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1562 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1563 r_val=-hfx_fraction)
1564 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1566 CASE (do_potential_mix_cl)
1567 omega = x_data(1, 1)%potential_parameter%omega
1568 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1569 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1570 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1572 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1573 r_val=hfx_fraction*scale_longrange)
1574 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1575 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1576 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1578 CASE (do_potential_mix_cl_trunc)
1579 omega = x_data(1, 1)%potential_parameter%omega
1580 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1581 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1582 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1583 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1585 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1586 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1587 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1588 r_val=cutoff_radius)
1589 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1591 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1592 r_val=hfx_fraction*scale_longrange)
1593 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1594 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1595 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1598 cpabort(
"Unknown potential operator!")
1602 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1604 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1605 i_val=xc_funct_no_shortcut)
1607 SELECT CASE (hfx_potential_type)
1608 CASE (do_potential_coulomb)
1610 funct_found = .false.
1613 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1614 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1615 IF (xc_fun%section%name ==
"PBE")
THEN
1616 funct_found = .true.
1619 IF (.NOT. funct_found)
THEN
1620 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1622 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1624 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1627 CALL section_vals_val_get(xc_fun_section,
"PBE%SCALE_X", &
1629 scale_x = scale_x + hfx_fraction
1630 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1633 CASE (do_potential_short)
1634 omega = x_data(1, 1)%potential_parameter%omega
1636 funct_found = .false.
1639 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1640 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1641 IF (xc_fun%section%name ==
"XWPBE")
THEN
1642 funct_found = .true.
1645 IF (.NOT. funct_found)
THEN
1646 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1648 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1650 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1652 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1655 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1657 scale_x = scale_x + hfx_fraction
1658 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1661 CASE (do_potential_long)
1662 omega = x_data(1, 1)%potential_parameter%omega
1664 funct_found = .false.
1667 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1668 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1669 IF (xc_fun%section%name ==
"XWPBE")
THEN
1670 funct_found = .true.
1673 IF (.NOT. funct_found)
THEN
1674 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1676 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1677 r_val=-hfx_fraction)
1678 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1680 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1683 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1685 scale_x = scale_x - hfx_fraction
1686 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1688 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1690 scale_x = scale_x + hfx_fraction
1691 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1694 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1697 CASE (do_potential_truncated)
1698 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1700 funct_found = .false.
1703 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1704 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1705 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1706 funct_found = .true.
1709 IF (.NOT. funct_found)
THEN
1710 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1712 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1713 r_val=-hfx_fraction)
1714 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1715 r_val=cutoff_radius)
1717 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1719 scale_x = scale_x - hfx_fraction
1720 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1722 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1723 r_val=cutoff_radius)
1726 funct_found = .false.
1729 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1730 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1731 IF (xc_fun%section%name ==
"XWPBE")
THEN
1732 funct_found = .true.
1735 IF (.NOT. funct_found)
THEN
1736 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1738 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1740 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1744 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1746 scale_x = scale_x + hfx_fraction
1747 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1750 CASE (do_potential_mix_cl_trunc)
1751 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1752 omega = x_data(1, 1)%potential_parameter%omega
1753 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1754 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1756 funct_found = .false.
1759 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1760 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1761 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1762 funct_found = .true.
1765 IF (.NOT. funct_found)
THEN
1766 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1768 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1769 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
1770 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1771 r_val=cutoff_radius)
1774 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1776 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
1777 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1779 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1780 r_val=cutoff_radius)
1783 funct_found = .false.
1786 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1787 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1788 IF (xc_fun%section%name ==
"XWPBE")
THEN
1789 funct_found = .true.
1792 IF (.NOT. funct_found)
THEN
1793 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1795 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1796 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1797 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1798 r_val=-hfx_fraction*scale_longrange)
1799 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1803 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1805 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1806 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1808 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1810 scale_x = scale_x - hfx_fraction*scale_longrange
1811 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1814 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1817 CASE (do_potential_mix_cl)
1818 omega = x_data(1, 1)%potential_parameter%omega
1819 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1820 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1822 funct_found = .false.
1825 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1826 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1827 IF (xc_fun%section%name ==
"XWPBE")
THEN
1828 funct_found = .true.
1831 IF (.NOT. funct_found)
THEN
1832 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1834 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1835 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1836 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1837 r_val=-hfx_fraction*scale_longrange)
1838 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1842 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1844 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1845 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1848 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1850 scale_x = scale_x - hfx_fraction*scale_longrange
1851 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1854 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1858 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default_libxc)
THEN
1861#if defined (__LIBXC)
1862 SELECT CASE (hfx_potential_type)
1863 CASE (do_potential_coulomb)
1864 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1866 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1867 r_val=-hfx_fraction)
1868 CASE (do_potential_short)
1869 omega = x_data(1, 1)%potential_parameter%omega
1870 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1872 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1873 r_val=-hfx_fraction)
1874 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1876 CASE (do_potential_truncated)
1877 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1878 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1880 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1882 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1883 r_val=cutoff_radius)
1884 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1886 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1887 r_val=-hfx_fraction)
1888 CASE (do_potential_long)
1889 omega = x_data(1, 1)%potential_parameter%omega
1890 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1892 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1894 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1896 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1898 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1899 r_val=-hfx_fraction)
1900 CASE (do_potential_mix_cl)
1901 omega = x_data(1, 1)%potential_parameter%omega
1902 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1903 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1904 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1906 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1907 r_val=hfx_fraction*scale_longrange)
1908 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1910 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1912 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1913 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1914 CASE (do_potential_mix_cl_trunc)
1915 omega = x_data(1, 1)%potential_parameter%omega
1916 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1917 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1918 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1919 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1921 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1922 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1923 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1924 r_val=cutoff_radius)
1925 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1927 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1928 r_val=hfx_fraction*scale_longrange)
1929 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1931 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1933 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1934 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1936 cpabort(
"Unknown potential operator!")
1940 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1942 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1943 i_val=xc_funct_no_shortcut)
1945 SELECT CASE (hfx_potential_type)
1946 CASE (do_potential_coulomb)
1948 funct_found = .false.
1951 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1952 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1953 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
1954 funct_found = .true.
1957 IF (.NOT. funct_found)
THEN
1958 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1960 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1963 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
1965 scale_x = scale_x + hfx_fraction
1966 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1969 CASE (do_potential_short)
1970 omega = x_data(1, 1)%potential_parameter%omega
1972 funct_found = .false.
1975 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1976 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1977 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
1978 funct_found = .true.
1981 IF (.NOT. funct_found)
THEN
1982 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1984 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1986 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1989 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1991 scale_x = scale_x + hfx_fraction
1992 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1995 CASE (do_potential_long)
1996 omega = x_data(1, 1)%potential_parameter%omega
1998 funct_found = .false.
2001 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2002 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2003 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2004 funct_found = .true.
2007 IF (.NOT. funct_found)
THEN
2008 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2010 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2011 r_val=-hfx_fraction)
2012 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2015 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2017 scale_x = scale_x - hfx_fraction
2018 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2021 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2025 funct_found = .false.
2028 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2029 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2030 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2031 funct_found = .true.
2034 IF (.NOT. funct_found)
THEN
2035 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2037 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2040 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2042 scale_x = scale_x + hfx_fraction
2043 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2046 CASE (do_potential_truncated)
2047 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2049 funct_found = .false.
2052 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2053 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2054 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2055 funct_found = .true.
2058 IF (.NOT. funct_found)
THEN
2059 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2061 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2062 r_val=-hfx_fraction)
2063 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2064 r_val=cutoff_radius)
2067 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2069 scale_x = scale_x - hfx_fraction
2070 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2072 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2073 r_val=cutoff_radius)
2076 funct_found = .false.
2079 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2080 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2081 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2082 funct_found = .true.
2085 IF (.NOT. funct_found)
THEN
2086 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2088 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2092 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2094 scale_x = scale_x + hfx_fraction
2095 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2098 CASE (do_potential_mix_cl_trunc)
2099 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2100 omega = x_data(1, 1)%potential_parameter%omega
2101 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2102 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2104 funct_found = .false.
2107 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2108 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2109 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2110 funct_found = .true.
2113 IF (.NOT. funct_found)
THEN
2114 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2116 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2117 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
2118 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2119 r_val=cutoff_radius)
2122 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2124 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
2125 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2127 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2128 r_val=cutoff_radius)
2131 funct_found = .false.
2134 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2135 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2136 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2137 funct_found = .true.
2140 IF (.NOT. funct_found)
THEN
2141 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2143 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2144 r_val=-hfx_fraction*scale_longrange)
2145 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2149 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2151 scale_x = scale_x - hfx_fraction*scale_longrange
2152 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2155 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2159 funct_found = .false.
2162 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2163 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2164 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2165 funct_found = .true.
2168 IF (.NOT. funct_found)
THEN
2169 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2171 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2172 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2174 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2176 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2177 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2180 CASE (do_potential_mix_cl)
2181 omega = x_data(1, 1)%potential_parameter%omega
2182 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2183 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2185 funct_found = .false.
2188 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2189 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2190 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2191 funct_found = .true.
2194 IF (.NOT. funct_found)
THEN
2195 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2197 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2198 r_val=-hfx_fraction*scale_longrange)
2199 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2203 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2205 scale_x = scale_x - hfx_fraction*scale_longrange
2206 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2209 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2213 funct_found = .false.
2216 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2217 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2218 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2219 funct_found = .true.
2222 IF (.NOT. funct_found)
THEN
2223 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2225 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2226 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2228 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2230 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2231 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2236 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2237 "exchange correction functionals, you have to compile and link against LibXC!")
2241 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex .OR. &
2242 admm_env%aux_exch_func == do_admm_aux_exch_func_opt .OR. &
2243 admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2244 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2246 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2247 name_x_func =
'OPTX'
2248 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2249 name_x_func =
'BECKE88'
2252 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2254 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2255 r_val=-hfx_fraction)
2257 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2258 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", r_val=0.0_dp)
2261 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2262 IF (admm_env%aux_exch_func_param)
THEN
2263 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2264 r_val=admm_env%aux_x_param(1))
2265 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2266 r_val=admm_env%aux_x_param(2))
2267 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2268 r_val=admm_env%aux_x_param(3))
2273 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2276 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2277 i_val=xc_funct_no_shortcut)
2280 funct_found = .false.
2283 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2284 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2285 IF (xc_fun%section%name == trim(name_x_func))
THEN
2286 funct_found = .true.
2289 IF (.NOT. funct_found)
THEN
2290 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2292 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2294 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2295 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", &
2297 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2298 IF (admm_env%aux_exch_func_param)
THEN
2299 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2300 r_val=admm_env%aux_x_param(1))
2301 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2302 r_val=admm_env%aux_x_param(2))
2303 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2304 r_val=admm_env%aux_x_param(3))
2309 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2311 scale_x = scale_x + hfx_fraction
2312 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2314 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2315 cpassert(.NOT. admm_env%aux_exch_func_param)
2319 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc .OR. &
2320 admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc .OR. &
2321 admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc .OR. &
2322 admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2324 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc)
THEN
2325 name_x_func =
'GGA_X_PBE'
2326 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2327 name_x_func =
'GGA_X_OPTX'
2328 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2329 name_x_func =
'GGA_X_B88'
2330 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc)
THEN
2331 name_x_func =
'LDA_X'
2334 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2336 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2337 r_val=-hfx_fraction)
2339 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2340 IF (admm_env%aux_exch_func_param)
THEN
2341 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2342 r_val=admm_env%aux_x_param(1))
2344 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2345 r_val=admm_env%aux_x_param(2)/x_factor_c)
2346 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2347 r_val=admm_env%aux_x_param(3))
2352 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2355 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2356 i_val=xc_funct_no_shortcut)
2359 funct_found = .false.
2362 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2363 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2364 IF (xc_fun%section%name == trim(name_x_func))
THEN
2365 funct_found = .true.
2368 IF (.NOT. funct_found)
THEN
2369 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2371 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2373 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2374 IF (admm_env%aux_exch_func_param)
THEN
2375 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2376 r_val=admm_env%aux_x_param(1))
2378 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2379 r_val=admm_env%aux_x_param(2)/x_factor_c)
2380 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2381 r_val=admm_env%aux_x_param(3))
2386 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2388 scale_x = scale_x + hfx_fraction
2389 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2391 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2392 cpassert(.NOT. admm_env%aux_exch_func_param)
2396 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2397 "exchange correction functionals, you have to compile and link against LibXC!")
2401 cpabort(
"Unknown exchange correction functional!")
2404 IF (debug_functional)
THEN
2405 iounit = cp_logger_get_default_io_unit(logger)
2406 IF (iounit > 0)
THEN
2407 WRITE (iounit,
"(A)")
" ADMM Primary Basis Set Functional"
2409 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2411 funct_found = .false.
2414 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2415 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2417 scale_x = -1000.0_dp
2418 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2419 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2421 IF (xc_fun%section%name ==
"XWPBE")
THEN
2422 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2423 IF (iounit > 0)
THEN
2424 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2427 IF (iounit > 0)
THEN
2428 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2433 IF (iounit > 0)
THEN
2434 WRITE (iounit,
"(A)")
" Auxiliary Basis Set Functional"
2436 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
2438 funct_found = .false.
2441 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2442 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2443 scale_x = -1000.0_dp
2444 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2445 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2447 IF (xc_fun%section%name ==
"XWPBE")
THEN
2448 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2449 IF (iounit > 0)
THEN
2450 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2453 IF (iounit > 0)
THEN
2454 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2477 external_hfx_sections, external_x_data, external_para_env)
2478 TYPE(dbcsr_p_type),
DIMENSION(:),
INTENT(INOUT), &
2479 TARGET :: matrix_ks, rho_ao
2480 TYPE(qs_environment_type),
POINTER :: qs_env
2481 LOGICAL,
INTENT(IN),
OPTIONAL :: update_energy, recalc_integrals
2482 TYPE(section_vals_type),
OPTIONAL,
POINTER :: external_hfx_sections
2483 TYPE(hfx_type),
DIMENSION(:, :),
OPTIONAL,
TARGET :: external_x_data
2484 TYPE(mp_para_env_type),
OPTIONAL,
POINTER :: external_para_env
2486 CHARACTER(LEN=*),
PARAMETER :: routinen =
'tddft_hfx_matrix'
2488 INTEGER :: handle, irep, ispin, mspin, n_rep_hf, &
2490 LOGICAL :: distribute_fock_matrix, &
2491 hfx_treat_lsd_in_core, &
2492 my_update_energy, s_mstruct_changed
2493 REAL(kind=dp) :: eh1, ehfx
2494 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_kp, rho_ao_kp
2495 TYPE(dft_control_type),
POINTER :: dft_control
2496 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
2497 TYPE(mp_para_env_type),
POINTER :: para_env
2498 TYPE(qs_energy_type),
POINTER :: energy
2499 TYPE(section_vals_type),
POINTER :: hfx_sections, input
2501 CALL timeset(routinen, handle)
2503 NULLIFY (dft_control, hfx_sections, input, para_env, matrix_ks_kp, rho_ao_kp)
2505 CALL get_qs_env(qs_env=qs_env, &
2506 dft_control=dft_control, &
2509 para_env=para_env, &
2510 s_mstruct_changed=s_mstruct_changed, &
2514 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
2516 IF (
PRESENT(external_hfx_sections)) hfx_sections => external_hfx_sections
2517 IF (
PRESENT(external_x_data)) x_data => external_x_data
2518 IF (
PRESENT(external_para_env)) para_env => external_para_env
2520 my_update_energy = .true.
2521 IF (
PRESENT(update_energy)) my_update_energy = update_energy
2523 IF (
PRESENT(recalc_integrals)) s_mstruct_changed = recalc_integrals
2525 cpassert(dft_control%nimages == 1)
2526 nspins = dft_control%nspins
2528 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2529 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
2532 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2533 distribute_fock_matrix = .true.
2536 IF (hfx_treat_lsd_in_core) mspin = nspins
2538 matrix_ks_kp(1:nspins, 1:1) => matrix_ks(1:nspins)
2539 rho_ao_kp(1:nspins, 1:1) => rho_ao(1:nspins)
2541 DO irep = 1, n_rep_hf
2545 IF (x_data(irep, 1)%do_hfx_ri)
THEN
2546 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_kp, ehfx, &
2547 rho_ao=rho_ao_kp, geometry_did_change=s_mstruct_changed, &
2548 nspins=nspins, hf_fraction=x_data(irep, 1)%general_parameter%fraction)
2552 CALL integrate_four_center(qs_env, x_data, matrix_ks_kp, eh1, rho_ao_kp, hfx_sections, para_env, &
2553 s_mstruct_changed, irep, distribute_fock_matrix, ispin=ispin)
2558 IF (my_update_energy) energy%ex = ehfx
2560 CALL timestop(handle)
Types and set/get functions for auxiliary density matrix methods.
subroutine, public admm_dm_create(admm_dm, admm_control, nspins, natoms)
Create a new admm_dm type.
Contains ADMM methods which require molecular orbitals.
subroutine, public scale_dm(qs_env, rho_ao_orb, scale_back)
Scale density matrix by gsi(ispin), is needed for force scaling in ADMMP.
subroutine, public kpoint_calc_admm_matrices(qs_env, calculate_forces)
Fill the ADMM overlp and basis change matrices in the KP env based on the real-space array.
Types and set/get functions for auxiliary density matrix methods.
subroutine, public get_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Get routine for the ADMM env.
subroutine, public set_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Set routine for the ADMM env.
subroutine, public admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit, blacs_env_ext)
creates ADMM environment, initializes the basic types
Define the atomic kind types and their sub types.
subroutine, public add_basis_set_to_container(container, basis_set, basis_set_type)
...
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
subroutine, public copy_gto_basis_set(basis_set_in, basis_set_out)
...
Handles all functions related to the CELL.
real(kind=dp) function, public plane_distance(h, k, l, cell)
Calculate the distance between two lattice planes as defined by a triple of Miller indices (hkl).
methods related to the blacs parallel environment
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_init_p(matrix)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_add(matrix_a, matrix_b, alpha_scalar, beta_scalar)
...
Routines that link DBCSR and CP2K concepts together.
subroutine, public cp_dbcsr_alloc_block_from_nbl(matrix, sab_orb, desymmetrize)
allocate the blocks of a dbcsr based on the neighbor list
DBCSR operations in CP2K.
subroutine, public cp_dbcsr_m_by_n_from_row_template(matrix, template, n, sym)
Utility function to create dbcsr matrix, m x n matrix (n arbitrary) with the same processor grid and ...
pool for for elements that are retained and released
represent the structure of a full matrix
subroutine, public cp_fm_struct_create(fmstruct, para_env, context, nrow_global, ncol_global, nrow_block, ncol_block, descriptor, first_p_pos, local_leading_dimension, template_fmstruct, square_blocks, force_block)
allocates and initializes a full matrix structure
subroutine, public cp_fm_struct_release(fmstruct)
releases a full matrix structure
represent a full matrix distributed on many processors
subroutine, public cp_fm_get_info(matrix, name, nrow_global, ncol_global, nrow_block, ncol_block, nrow_local, ncol_local, row_indices, col_indices, local_data, context, nrow_locals, ncol_locals, matrix_struct, para_env)
returns all kind of information about the full matrix
subroutine, public cp_fm_create(matrix, matrix_struct, name, use_sp)
creates a new full matrix with the given structure
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
stores a lists of integer that are local to a processor. The idea is that these integers represent ob...
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
Definition of the atomic potential types.
Utilities for hfx and admm methods.
subroutine, public hfx_ks_matrix(qs_env, matrix_ks, rho, energy, calculate_forces, just_energy, v_rspace_new, v_tau_rspace)
Add the hfx contributions to the Hamiltonian.
subroutine, public tddft_hfx_matrix(matrix_ks, rho_ao, qs_env, update_energy, recalc_integrals, external_hfx_sections, external_x_data, external_para_env)
Add the hfx contributions to the Hamiltonian.
subroutine, public hfx_admm_init(qs_env, calculate_forces)
...
subroutine, public aux_admm_init(qs_env, mos, admm_env, admm_control, basis_type)
Minimal setup routine for admm_env No forces No k-points No DFT correction terms.
subroutine, public create_admm_xc_section(x_data, xc_section, admm_env)
This routine modifies the xc section depending on the potential type used for the HF exchange and the...
subroutine, public hfx_ks_matrix_kp(qs_env, matrix_ks, energy, calculate_forces)
Add the HFX K-point contribution to the real-space Hamiltonians.
Routines to calculate derivatives with respect to basis function origin.
subroutine, public derivatives_four_center(qs_env, rho_ao, rho_ao_resp, hfx_section, para_env, irep, use_virial, adiabatic_rescale_factor, resp_only, external_x_data)
computes four center derivatives for a full basis set and updates the forcesfock_4c arrays....
Routines to calculate HFX energy and potential.
subroutine, public integrate_four_center(qs_env, x_data, ks_matrix, ehfx, rho_ao, hfx_section, para_env, geometry_did_change, irep, distribute_fock_matrix, ispin)
computes four center integrals for a full basis set and updates the Kohn-Sham-Matrix and energy....
Test routines for HFX caclulations using PW.
subroutine, public pw_hfx(qs_env, ehfx, hfx_section, poisson_env, auxbas_pw_pool, irep)
computes the Hartree-Fock energy brute force in a pw basis
RI-methods for HFX and K-points. \auhtor Augustin Bussy (01.2023)
subroutine, public hfx_ri_update_forces_kp(qs_env, ri_data, nspins, hf_fraction, rho_ao, use_virial)
Update the K-points RI-HFX forces.
subroutine, public hfx_ri_update_ks_kp(qs_env, ri_data, ks_matrix, ehfx, rho_ao, geometry_did_change, nspins, hf_fraction)
Update the KS matrices for each real-space image.
subroutine, public hfx_ri_update_ks(qs_env, ri_data, ks_matrix, ehfx, mos, rho_ao, geometry_did_change, nspins, hf_fraction)
...
subroutine, public hfx_ri_update_forces(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, mos, use_virial, resp_only, rescale_factor)
the general routine that calls the relevant force code
Types and set/get functions for HFX.
Defines the basic variable types.
integer, parameter, public dp
Routines needed for kpoint calculation.
subroutine, public kpoint_initialize_mos(kpoint, mos, added_mos, for_aux_fit)
Initialize a set of MOs and density matrix for each kpoint (kpoint group)
Datatype to translate between k-points (2d) and gamma-point (1d) code.
subroutine, public kpoint_transitional_release(this)
Release the matrix set, using the right pointer.
subroutine, public set_2d_pointer(this, ptr_2d)
Assigns a 2D pointer.
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
2- and 3-center electron repulsion integral routines based on libint2 Currently available operators: ...
real(kind=dp), parameter, public cutoff_screen_factor
Collection of simple mathematical functions and subroutines.
subroutine, public erfc_cutoff(eps, omg, r_cutoff)
compute a truncation radius for the shortrange operator
Interface to the message passing library MPI.
Define the data structure for the molecule information.
Define the data structure for the particle information.
subroutine, public get_paw_proj_set(paw_proj_set, csprj, chprj, first_prj, first_prjs, last_prj, local_oce_sphi_h, local_oce_sphi_s, maxl, ncgauprj, nsgauprj, nsatbas, nsotot, nprj, o2nindex, n2oindex, rcprj, rzetprj, zisomin, zetprj)
Get informations about a paw projectors set.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
functions related to the poisson solver on regular grids
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs)
Get the QUICKSTEP environment.
subroutine, public set_qs_env(qs_env, super_cell, mos, qmmm, qmmm_periodic, ewald_env, ewald_pw, mpools, rho_external, external_vxc, mask, scf_control, rel_control, qs_charges, ks_env, ks_qmmm_env, wf_history, scf_env, active_space, input, oce, rho_atom_set, rho0_atom_set, rho0_mpole, run_rtp, rtp, rhoz_set, rhoz_tot, ecoul_1c, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, efield, linres_control, xas_env, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, ls_scf_env, do_transport, transport_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, harris_env, gcp_env, mp2_env, bs_env, kg_env, force, kpoints, wanniercentres, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs)
Set the QUICKSTEP environment.
Calculate the interaction radii for the operator matrix calculation.
subroutine, public init_interaction_radii(qs_control, qs_kind_set)
Initialize all the atomic kind radii for a given threshold value.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public init_gapw_nlcc(qs_kind_set)
...
subroutine, public get_qs_kind_set(qs_kind_set, all_potential_present, tnadd_potential_present, gth_potential_present, sgp_potential_present, paw_atom_present, dft_plus_u_atom_present, maxcgf, maxsgf, maxco, maxco_proj, maxgtops, maxlgto, maxlprj, maxnset, maxsgf_set, ncgf, npgf, nset, nsgf, nshell, maxpol, maxlppl, maxlppnl, maxppnl, nelectron, maxder, max_ngrid_rad, max_sph_harm, maxg_iso_not0, lmax_rho0, basis_rcut, basis_type, total_zeff_corr, npgf_seg)
Get attributes of an atomic kind set.
subroutine, public init_gapw_basis_set(qs_kind_set, qs_control, force_env_section, modify_qs_control)
...
subroutine, public local_rho_set_create(local_rho_set)
...
wrapper for the pools of matrixes
subroutine, public mpools_get(mpools, ao_mo_fm_pools, ao_ao_fm_pools, mo_mo_fm_pools, ao_mosub_fm_pools, mosub_mosub_fm_pools, maxao_maxmo_fm_pool, maxao_maxao_fm_pool, maxmo_maxmo_fm_pool)
returns various attributes of the mpools (notably the pools contained in it)
Definition and initialisation of the mo data type.
subroutine, public allocate_mo_set(mo_set, nao, nmo, nelectron, n_el_f, maxocc, flexible_electron_count)
Allocates a mo set and partially initializes it (nao,nmo,nelectron, and flexible_electron_count are v...
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
subroutine, public init_mo_set(mo_set, fm_pool, fm_ref, fm_struct, name)
initializes an allocated mo_set. eigenvalues, mo_coeff, occupation_numbers are valid only after this ...
Define the neighbor list data types and the corresponding functionality.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
Generate the atomic neighbor lists.
subroutine, public atom2d_cleanup(atom2d)
free the internals of atom2d
subroutine, public pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
...
subroutine, public build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, mic, symmetric, molecular, subset_of_mol, current_subset, operator_type, nlname, atomb_to_keep)
Build simple pair neighbor lists.
subroutine, public write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, nl_type, middle_name, nlname)
Write a set of neighbor lists to the output unit.
subroutine, public atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, molecule_set, molecule_only, particle_set)
Build some distribution structure of atoms, refactored from build_qs_neighbor_lists.
Routines for the construction of the coefficients for the expansion of the atomic densities rho1_hard...
subroutine, public build_oce_matrices(intac, calculate_forces, nder, qs_kind_set, particle_set, sap_oce, eps_fit)
Set up the sparse matrix for the coefficients of one center expansions This routine uses the same log...
subroutine, public allocate_oce_set(oce_set, nkind)
Allocate and initialize the matrix set of oce coefficients.
subroutine, public create_oce_set(oce_set)
...
Calculation of overlap matrix, its derivatives and forces.
subroutine, public build_overlap_matrix(ks_env, matrix_s, matrixkp_s, matrix_name, nderivative, basis_type_a, basis_type_b, sab_nl, calculate_forces, matrix_p, matrixkp_p)
Calculation of the overlap matrix over Cartesian Gaussian functions.
subroutine, public init_rho_atom(rho_atom_set, atomic_kind_set, qs_kind_set, dft_control, para_env)
...
methods of the rho structure (defined in qs_rho_types)
subroutine, public qs_rho_rebuild(rho, qs_env, rebuild_ao, rebuild_grids, admm, pw_env_external)
rebuilds rho (if necessary allocating and initializing it)
superstucture that hold various representations of the density and keeps track of which ones are vali...
subroutine, public qs_rho_get(rho_struct, rho_ao, rho_ao_im, rho_ao_kp, rho_ao_im_kp, rho_r, drho_r, rho_g, drho_g, tau_r, tau_g, rho_r_valid, drho_r_valid, rho_g_valid, drho_g_valid, tau_r_valid, tau_g_valid, tot_rho_r, tot_rho_g, rho_r_sccs, soft_valid, complex_rho_ao)
returns info about the density described by this object. If some representation is not available an e...
subroutine, public qs_rho_create(rho)
Allocates a new instance of rho.
Types and set_get for real time propagation depending on runtype and diagonalization method different...
generate the tasks lists used by collocate and integrate routines
subroutine, public generate_qs_task_list(ks_env, task_list, reorder_rs_grid_ranks, skip_load_balance_distributed, soft_valid, basis_type, pw_env_external, sab_orb_external)
...
subroutine, public deallocate_task_list(task_list)
deallocates the components and the object itself
subroutine, public allocate_task_list(task_list)
allocates and initialised the components of the task_list_type
subroutine, public rescale_xc_potential(qs_env, ks_matrix, rho, energy, v_rspace_new, v_tau_rspace, hf_energy, just_energy, calculate_forces, use_virial)
A subtype of the admm_env that contains the extra data needed for an ADMM GAPW calculation.
stores some data used in wavefunction fitting
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
to create arrays of pools
keeps the information about the structure of a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
structure to store local (to a processor) ordered lists of integers.
distributes pairs on a 2d grid of processors
stores some data used in construction of Kohn-Sham matrix
Contains information about kpoints.
stores all the informations relevant to an mpi environment
contained for different pw related things
environment for the poisson solver
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Provides all information about a quickstep kind.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...
keeps the density in various representations, keeping track of which ones are valid.