43 dbcsr_type_no_symmetry
144#include "./base/base_uses.f90"
154 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'hfx_admm_utils'
167 LOGICAL,
INTENT(IN),
OPTIONAL :: calculate_forces
170 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_admm_init'
172 INTEGER :: handle, ispin, n_rep_hf, nao_aux_fit, &
173 natoms, nelectron, nmo
174 LOGICAL :: calc_forces, do_kpoints, &
175 s_mstruct_changed, use_virial
181 TYPE(
dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
184 TYPE(
mo_set_type),
DIMENSION(:),
POINTER :: mos, mos_aux_fit
186 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
191 CALL timeset(routinen, handle)
193 NULLIFY (admm_env, hfx_sections, mos, mos_aux_fit, para_env, virial, &
194 mo_coeff_aux_fit, xc_section, ks_env, dft_control, input, &
195 qs_kind_set, mo_coeff_b, aux_fit_fm_struct, blacs_env)
201 blacs_env=blacs_env, &
202 s_mstruct_changed=s_mstruct_changed, &
204 dft_control=dft_control, &
207 do_kpoints=do_kpoints)
209 calc_forces = .false.
210 IF (
PRESENT(calculate_forces)) calc_forces = .true.
217 cpabort(
"ADMM can handle only one HF section.")
219 IF (.NOT.
ASSOCIATED(admm_env))
THEN
221 CALL get_qs_env(qs_env, input=input, natom=natoms, qs_kind_set=qs_kind_set)
222 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=
"AUX_FIT")
223 CALL admm_env_create(admm_env, dft_control%admm_control, mos, para_env, natoms, nao_aux_fit)
226 IF (
PRESENT(ext_xc_section)) xc_section => ext_xc_section
231 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc) &
232 CALL init_admm_gapw(qs_env)
235 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
238 ALLOCATE (admm_env%rho_aux_fit)
240 ALLOCATE (admm_env%rho_aux_fit_buffer)
242 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
243 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
246 CALL admm_alloc_ks_matrices(admm_env, qs_env)
249 ALLOCATE (mos_aux_fit(dft_control%nspins))
250 DO ispin = 1, dft_control%nspins
251 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
255 nelectron=nelectron, &
256 n_el_f=real(nelectron,
dp), &
258 flexible_electron_count=dft_control%relax_multiplicity)
260 admm_env%mos_aux_fit => mos_aux_fit
262 DO ispin = 1, dft_control%nspins
265 nrow_global=nao_aux_fit, ncol_global=nmo)
266 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
267 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
268 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
269 name=
"qs_env%mo_aux_fit"//trim(adjustl(
cp_to_string(ispin))))
273 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
276 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
278 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
279 n=nmo, sym=dbcsr_type_no_symmetry)
283 IF (qs_env%requires_mo_derivs)
THEN
284 ALLOCATE (admm_env%mo_derivs_aux_fit(dft_control%nspins))
285 DO ispin = 1, dft_control%nspins
286 CALL get_mo_set(admm_env%mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit)
287 CALL cp_fm_create(admm_env%mo_derivs_aux_fit(ispin), mo_coeff_aux_fit%matrix_struct)
294 TYPE(
mo_set_type),
DIMENSION(:, :),
POINTER :: mos_aux_fit_kp
297 INTEGER :: ic, ik, ikk, is
298 INTEGER,
PARAMETER :: nwork1 = 4
299 LOGICAL :: use_real_wfn
301 NULLIFY (ao_mo_fm_pools_aux_fit, mos_aux_fit_kp)
303 CALL get_qs_env(qs_env=qs_env, kpoints=kpoints)
308 cpabort(
"Only ADMM_PURIFICATION_METHOD NONE implemeted for ADMM K-points")
311 cpabort(
"Only BASIS_PROJECTION and CHARGE_CONSTRAINED_PROJECTION implemented for KP")
312 IF (admm_env%do_admms .OR. admm_env%do_admmp .OR. admm_env%do_admmq)
THEN
313 IF (use_real_wfn) cpabort(
"Only KP-HFX ADMM2 is implemented with REAL wavefunctions")
318 CALL mpools_get(kpoints%mpools_aux_fit, ao_mo_fm_pools=ao_mo_fm_pools_aux_fit)
319 DO ik = 1,
SIZE(kpoints%kp_aux_env)
320 mos_aux_fit_kp => kpoints%kp_aux_env(ik)%kpoint_env%mos
321 ikk = kpoints%kp_range(1) + ik - 1
322 DO ispin = 1,
SIZE(mos_aux_fit_kp, 2)
323 DO ic = 1,
SIZE(mos_aux_fit_kp, 1)
324 CALL get_mo_set(mos_aux_fit_kp(ic, ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
327 cpassert(.NOT.
ASSOCIATED(mo_coeff_b))
329 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
331 fm_pool=ao_mo_fm_pools_aux_fit(ispin)%pool, &
339 ALLOCATE (admm_env%scf_work_aux_fit(nwork1))
343 nrow_global=nao_aux_fit, &
344 ncol_global=nao_aux_fit)
348 matrix_struct=ao_ao_fm_struct, &
349 name=
"SCF-WORK_MATRIX-AUX-"//trim(adjustl(
cp_to_string(is))))
359 ELSE IF (s_mstruct_changed)
THEN
360 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
361 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
362 CALL admm_alloc_ks_matrices(admm_env, qs_env)
363 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
367 IF (admm_env%do_gapw .AND. dft_control%do_admm_dm)
THEN
368 cpabort(
"GAPW ADMM not implemented for MCWEENY or NONE_DM purification.")
373 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
374 IF (use_virial .AND. admm_env%do_admms .AND. dft_control%nspins == 2)
THEN
375 cpabort(
"ADMMS stress tensor is only available for closed-shell systems")
377 IF (use_virial .AND. admm_env%do_admmp .AND. dft_control%nspins == 2)
THEN
378 cpabort(
"ADMMP stress tensor is only available for closed-shell systems")
381 IF (dft_control%do_admm_dm .AND. .NOT.
ASSOCIATED(admm_env%admm_dm))
THEN
382 CALL admm_dm_create(admm_env%admm_dm, dft_control%admm_control, nspins=dft_control%nspins, natoms=natoms)
385 CALL timestop(handle)
402 TYPE(qs_environment_type),
POINTER :: qs_env
403 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos
404 TYPE(admm_type),
POINTER :: admm_env
405 TYPE(admm_control_type),
POINTER :: admm_control
406 CHARACTER(LEN=*) :: basis_type
408 CHARACTER(LEN=*),
PARAMETER :: routinen =
'aux_admm_init'
410 INTEGER :: handle, ispin, nao_aux_fit, natoms, &
412 LOGICAL :: do_kpoints
414 TYPE(cp_blacs_env_type),
POINTER :: blacs_env
415 TYPE(cp_fm_struct_type),
POINTER :: aux_fit_fm_struct
416 TYPE(cp_fm_type),
POINTER :: mo_coeff_aux_fit
417 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
418 TYPE(dbcsr_type),
POINTER :: mo_coeff_b
419 TYPE(dft_control_type),
POINTER :: dft_control
420 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos_aux_fit
421 TYPE(mp_para_env_type),
POINTER :: para_env
422 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
423 TYPE(qs_ks_env_type),
POINTER :: ks_env
425 CALL timeset(routinen, handle)
427 cpassert(.NOT.
ASSOCIATED(admm_env))
429 CALL get_qs_env(qs_env, &
431 blacs_env=blacs_env, &
433 dft_control=dft_control, &
434 do_kpoints=do_kpoints)
436 cpassert(.NOT. do_kpoints)
437 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc)
THEN
438 cpabort(
"AUX ADMM not possible with GAPW")
442 CALL get_qs_env(qs_env, natom=natoms, qs_kind_set=qs_kind_set)
443 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=basis_type)
445 CALL admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit)
447 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
449 CALL admm_init_hamiltonians(admm_env, qs_env, basis_type)
450 NULLIFY (admm_env%rho_aux_fit, admm_env%rho_aux_fit_buffer)
452 CALL admm_alloc_ks_matrices(admm_env, qs_env)
454 ALLOCATE (mos_aux_fit(dft_control%nspins))
455 DO ispin = 1, dft_control%nspins
456 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
457 CALL allocate_mo_set(mo_set=mos_aux_fit(ispin), nao=nao_aux_fit, nmo=nmo, &
458 nelectron=nelectron, n_el_f=real(nelectron, dp), &
459 maxocc=maxocc, flexible_electron_count=0.0_dp)
461 admm_env%mos_aux_fit => mos_aux_fit
463 DO ispin = 1, dft_control%nspins
464 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo)
465 CALL cp_fm_struct_create(aux_fit_fm_struct, context=blacs_env, para_env=para_env, &
466 nrow_global=nao_aux_fit, ncol_global=nmo)
467 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
468 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
469 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
470 name=
"mo_aux_fit"//trim(adjustl(cp_to_string(ispin))))
472 CALL cp_fm_struct_release(aux_fit_fm_struct)
474 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
475 CALL cp_fm_get_info(mos_aux_fit(ispin)%mo_coeff, ncol_global=nmo)
476 CALL dbcsr_init_p(mos_aux_fit(ispin)%mo_coeff_b)
477 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
478 CALL cp_dbcsr_m_by_n_from_row_template(mos_aux_fit(ispin)%mo_coeff_b, &
479 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
480 n=nmo, sym=dbcsr_type_no_symmetry)
484 CALL timestop(handle)
492 SUBROUTINE init_admm_gapw(qs_env)
494 TYPE(qs_environment_type),
POINTER :: qs_env
496 INTEGER :: ikind, nkind
497 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
498 TYPE(admm_type),
POINTER :: admm_env
499 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
500 TYPE(dft_control_type),
POINTER :: dft_control
501 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis, aux_fit_soft_basis, &
502 orb_basis, soft_basis
503 TYPE(mp_para_env_type),
POINTER :: para_env
504 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
505 TYPE(section_vals_type),
POINTER :: input
507 NULLIFY (admm_kind_set, aux_fit_basis, atomic_kind_set, aux_fit_soft_basis, &
508 dft_control, input, orb_basis, para_env, qs_kind_set, soft_basis)
510 CALL get_qs_env(qs_env, admm_env=admm_env, &
511 atomic_kind_set=atomic_kind_set, &
512 dft_control=dft_control, &
515 qs_kind_set=qs_kind_set)
517 admm_env%do_gapw = .true.
518 ALLOCATE (admm_env%admm_gapw_env)
519 admm_gapw_env => admm_env%admm_gapw_env
520 NULLIFY (admm_gapw_env%local_rho_set)
521 NULLIFY (admm_gapw_env%admm_kind_set)
522 NULLIFY (admm_gapw_env%task_list)
525 nkind =
SIZE(qs_kind_set)
526 ALLOCATE (admm_gapw_env%admm_kind_set(nkind))
527 admm_kind_set => admm_gapw_env%admm_kind_set
532 admm_kind_set(ikind)%name = qs_kind_set(ikind)%name
533 admm_kind_set(ikind)%element_symbol = qs_kind_set(ikind)%element_symbol
534 admm_kind_set(ikind)%natom = qs_kind_set(ikind)%natom
535 admm_kind_set(ikind)%hard_radius = qs_kind_set(ikind)%hard_radius
536 admm_kind_set(ikind)%max_rad_local = qs_kind_set(ikind)%max_rad_local
537 admm_kind_set(ikind)%gpw_type_forced = qs_kind_set(ikind)%gpw_type_forced
538 admm_kind_set(ikind)%ngrid_rad = qs_kind_set(ikind)%ngrid_rad
539 admm_kind_set(ikind)%ngrid_ang = qs_kind_set(ikind)%ngrid_ang
542 IF (
ASSOCIATED(qs_kind_set(ikind)%all_potential))
THEN
543 CALL copy_potential(qs_kind_set(ikind)%all_potential, admm_kind_set(ikind)%all_potential)
545 IF (
ASSOCIATED(qs_kind_set(ikind)%gth_potential))
THEN
546 CALL copy_potential(qs_kind_set(ikind)%gth_potential, admm_kind_set(ikind)%gth_potential)
548 IF (
ASSOCIATED(qs_kind_set(ikind)%sgp_potential))
THEN
549 CALL copy_potential(qs_kind_set(ikind)%sgp_potential, admm_kind_set(ikind)%sgp_potential)
553 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
554 CALL copy_gto_basis_set(aux_fit_basis, orb_basis)
555 CALL add_basis_set_to_container(admm_kind_set(ikind)%basis_sets, orb_basis,
"ORB")
559 CALL init_gapw_basis_set(admm_kind_set, dft_control%qs_control, input, &
560 modify_qs_control=.false.)
563 CALL init_interaction_radii(dft_control%qs_control, admm_kind_set)
566 CALL local_rho_set_create(admm_gapw_env%local_rho_set)
567 CALL init_rho_atom(admm_gapw_env%local_rho_set%rho_atom_set, &
568 atomic_kind_set, admm_kind_set, dft_control, para_env)
571 CALL init_gapw_nlcc(admm_kind_set)
575 NULLIFY (aux_fit_soft_basis)
576 CALL get_qs_kind(admm_kind_set(ikind), basis_set=soft_basis, basis_type=
"ORB_SOFT")
577 CALL copy_gto_basis_set(soft_basis, aux_fit_soft_basis)
578 CALL add_basis_set_to_container(qs_kind_set(ikind)%basis_sets, aux_fit_soft_basis,
"AUX_FIT_SOFT")
581 END SUBROUTINE init_admm_gapw
589 SUBROUTINE admm_init_hamiltonians(admm_env, qs_env, aux_basis_type)
591 TYPE(admm_type),
POINTER :: admm_env
592 TYPE(qs_environment_type),
POINTER :: qs_env
593 CHARACTER(len=*) :: aux_basis_type
595 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_init_hamiltonians'
597 INTEGER :: handle, hfx_pot, ikind, nkind
598 LOGICAL :: do_kpoints, mic, molecule_only
599 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_fit_present, orb_present
600 REAL(dp) :: eps_schwarz, omega, pdist, roperator, &
602 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_fit_radius, orb_radius
603 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
604 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
605 TYPE(cell_type),
POINTER :: cell
606 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp, &
607 matrix_s_aux_fit_vs_orb_kp
608 TYPE(dft_control_type),
POINTER :: dft_control
609 TYPE(distribution_1d_type),
POINTER :: distribution_1d
610 TYPE(distribution_2d_type),
POINTER :: distribution_2d
611 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis_set, orb_basis_set
612 TYPE(kpoint_type),
POINTER :: kpoints
613 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
614 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
615 TYPE(mp_para_env_type),
POINTER :: para_env
616 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
617 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
618 TYPE(qs_ks_env_type),
POINTER :: ks_env
619 TYPE(section_vals_type),
POINTER :: hfx_sections, neighbor_list_section
621 NULLIFY (particle_set, cell, kpoints, distribution_1d, distribution_2d, molecule_set, &
622 atomic_kind_set, dft_control, neighbor_list_section, aux_fit_basis_set, orb_basis_set, &
623 ks_env, para_env, qs_kind_set, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb_kp)
625 CALL timeset(routinen, handle)
627 CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, cell=cell, kpoints=kpoints, &
628 local_particles=distribution_1d, distribution_2d=distribution_2d, &
629 molecule_set=molecule_set, atomic_kind_set=atomic_kind_set, do_kpoints=do_kpoints, &
630 dft_control=dft_control, para_env=para_env, qs_kind_set=qs_kind_set)
631 ALLOCATE (orb_present(nkind), aux_fit_present(nkind))
632 ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), pair_radius(nkind, nkind))
633 aux_fit_radius(:) = 0.0_dp
635 molecule_only = .false.
636 IF (dft_control%qs_control%do_kg) molecule_only = .true.
638 IF (kpoints%nkp > 0)
THEN
640 ELSEIF (dft_control%qs_control%semi_empirical)
THEN
644 pdist = dft_control%qs_control%pairlist_radius
646 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
647 neighbor_list_section => section_vals_get_subs_vals(qs_env%input,
"DFT%PRINT%NEIGHBOR_LISTS")
649 ALLOCATE (atom2d(nkind))
650 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
651 molecule_set, molecule_only, particle_set=particle_set)
654 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type=
"ORB")
655 IF (
ASSOCIATED(orb_basis_set))
THEN
656 orb_present(ikind) = .true.
657 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
659 orb_present(ikind) = .false.
662 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type=aux_basis_type)
663 IF (
ASSOCIATED(aux_fit_basis_set))
THEN
664 aux_fit_present(ikind) = .true.
665 CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
667 aux_fit_present(ikind) = .false.
671 IF (pdist < 0.0_dp)
THEN
672 pdist = max(plane_distance(1, 0, 0, cell), &
673 plane_distance(0, 1, 0, cell), &
674 plane_distance(0, 0, 1, cell))
681 hfx_sections => section_vals_get_subs_vals(qs_env%input,
"DFT%XC%HF")
682 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
684 SELECT CASE (hfx_pot)
685 CASE (do_potential_id)
687 CASE (do_potential_truncated)
688 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
689 CASE (do_potential_mix_cl_trunc)
690 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
691 CASE (do_potential_short)
692 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%OMEGA", r_val=omega)
693 CALL section_vals_val_get(hfx_sections,
"SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
694 CALL erfc_cutoff(eps_schwarz, omega, roperator)
696 cpabort(
"HFX potential not available for K-points (NYI)")
700 CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, pair_radius, pdist)
701 pair_radius = pair_radius + cutoff_screen_factor*roperator
702 CALL build_neighbor_lists(admm_env%sab_aux_fit, particle_set, atom2d, cell, pair_radius, &
703 mic=mic, molecular=molecule_only, subcells=subcells, nlname=
"sab_aux_fit")
704 CALL build_neighbor_lists(admm_env%sab_aux_fit_asymm, particle_set, atom2d, cell, pair_radius, &
705 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
706 nlname=
"sab_aux_fit_asymm")
707 CALL pair_radius_setup(aux_fit_present, orb_present, aux_fit_radius, orb_radius, pair_radius)
708 CALL build_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, atom2d, cell, pair_radius, &
709 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
710 nlname=
"sab_aux_fit_vs_orb")
712 CALL write_neighbor_lists(admm_env%sab_aux_fit, particle_set, cell, para_env, neighbor_list_section, &
713 "/SAB_AUX_FIT",
"sab_aux_fit",
"AUX_FIT_ORBITAL AUX_FIT_ORBITAL")
714 CALL write_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, cell, para_env, neighbor_list_section, &
715 "/SAB_AUX_FIT_VS_ORB",
"sab_aux_fit_vs_orb",
"ORBITAL AUX_FIT_ORBITAL")
717 CALL atom2d_cleanup(atom2d)
720 CALL get_qs_env(qs_env, ks_env=ks_env)
722 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit)
723 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_kp, &
724 matrix_name=
"AUX_FIT_OVERLAP", &
725 basis_type_a=aux_basis_type, &
726 basis_type_b=aux_basis_type, &
727 sab_nl=admm_env%sab_aux_fit)
728 CALL set_2d_pointer(admm_env%matrix_s_aux_fit, matrix_s_aux_fit_kp)
729 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit_vs_orb)
730 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_vs_orb_kp, &
731 matrix_name=
"MIXED_OVERLAP", &
732 basis_type_a=aux_basis_type, &
733 basis_type_b=
"ORB", &
734 sab_nl=admm_env%sab_aux_fit_vs_orb)
735 CALL set_2d_pointer(admm_env%matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp)
737 CALL timestop(handle)
739 END SUBROUTINE admm_init_hamiltonians
747 SUBROUTINE admm_update_s_mstruct(admm_env, qs_env, aux_basis_type)
749 TYPE(admm_type),
POINTER :: admm_env
750 TYPE(qs_environment_type),
POINTER :: qs_env
751 CHARACTER(len=*) :: aux_basis_type
753 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_update_s_mstruct'
756 LOGICAL :: skip_load_balance_distributed
757 TYPE(dft_control_type),
POINTER :: dft_control
758 TYPE(qs_ks_env_type),
POINTER :: ks_env
760 NULLIFY (ks_env, dft_control)
762 CALL timeset(routinen, handle)
764 CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control)
767 skip_load_balance_distributed = dft_control%qs_control%skip_load_balance_distributed
768 IF (
ASSOCIATED(admm_env%task_list_aux_fit))
CALL deallocate_task_list(admm_env%task_list_aux_fit)
769 CALL allocate_task_list(admm_env%task_list_aux_fit)
770 CALL generate_qs_task_list(ks_env, admm_env%task_list_aux_fit, basis_type=aux_basis_type, &
771 reorder_rs_grid_ranks=.false., &
772 skip_load_balance_distributed=skip_load_balance_distributed, &
773 sab_orb_external=admm_env%sab_aux_fit)
776 CALL qs_rho_rebuild(admm_env%rho_aux_fit, qs_env=qs_env, admm=.true.)
777 CALL qs_rho_rebuild(admm_env%rho_aux_fit_buffer, qs_env=qs_env, admm=.true.)
779 CALL timestop(handle)
781 END SUBROUTINE admm_update_s_mstruct
787 SUBROUTINE update_admm_gapw(qs_env)
789 TYPE(qs_environment_type),
POINTER :: qs_env
791 CHARACTER(len=*),
PARAMETER :: routinen =
'update_admm_gapw'
793 INTEGER :: handle, ikind, nkind
795 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_present, oce_present
797 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_radius, oce_radius
798 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
799 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
800 TYPE(admm_type),
POINTER :: admm_env
801 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
802 TYPE(cell_type),
POINTER :: cell
803 TYPE(dft_control_type),
POINTER :: dft_control
804 TYPE(distribution_1d_type),
POINTER :: distribution_1d
805 TYPE(distribution_2d_type),
POINTER :: distribution_2d
806 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis
807 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
808 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
809 TYPE(neighbor_list_set_p_type),
DIMENSION(:), &
811 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
812 TYPE(paw_proj_set_type),
POINTER :: paw_proj
813 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
814 TYPE(qs_ks_env_type),
POINTER :: ks_env
816 NULLIFY (ks_env, qs_kind_set, admm_kind_set, aux_fit_basis, cell, distribution_1d)
817 NULLIFY (distribution_2d, paw_proj, particle_set, molecule_set, admm_env, admm_gapw_env)
818 NULLIFY (dft_control, atomic_kind_set, sap_oce)
820 CALL timeset(routinen, handle)
822 CALL get_qs_env(qs_env, ks_env=ks_env, qs_kind_set=qs_kind_set, admm_env=admm_env, &
823 dft_control=dft_control)
824 admm_gapw_env => admm_env%admm_gapw_env
825 admm_kind_set => admm_gapw_env%admm_kind_set
826 nkind =
SIZE(qs_kind_set)
829 IF (
ASSOCIATED(admm_gapw_env%task_list))
CALL deallocate_task_list(admm_gapw_env%task_list)
830 CALL allocate_task_list(admm_gapw_env%task_list)
833 CALL generate_qs_task_list(ks_env, admm_gapw_env%task_list, basis_type=
"AUX_FIT_SOFT", &
834 reorder_rs_grid_ranks=.false., &
835 skip_load_balance_distributed=dft_control%qs_control%skip_load_balance_distributed, &
836 sab_orb_external=admm_env%sab_aux_fit)
840 ALLOCATE (aux_present(nkind), oce_present(nkind))
841 aux_present = .false.; oce_present = .false.
842 ALLOCATE (aux_radius(nkind), oce_radius(nkind))
843 aux_radius = 0.0_dp; oce_radius = 0.0_dp
846 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
847 IF (
ASSOCIATED(aux_fit_basis))
THEN
848 aux_present(ikind) = .true.
849 CALL get_gto_basis_set(aux_fit_basis, kind_radius=aux_radius(ikind))
853 CALL get_qs_kind(admm_kind_set(ikind), paw_atom=paw_atom, paw_proj_set=paw_proj)
855 oce_present(ikind) = .true.
856 CALL get_paw_proj_set(paw_proj, rcprj=oce_radius(ikind))
860 ALLOCATE (pair_radius(nkind, nkind))
862 CALL pair_radius_setup(aux_present, oce_present, aux_radius, oce_radius, pair_radius)
864 CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, cell=cell, &
865 distribution_2d=distribution_2d, local_particles=distribution_1d, &
866 particle_set=particle_set, molecule_set=molecule_set)
867 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
869 ALLOCATE (atom2d(nkind))
870 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
871 molecule_set, .false., particle_set)
872 CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
873 subcells=subcells, operator_type=
"ABBA", nlname=
"AUX_PAW-PRJ")
874 CALL atom2d_cleanup(atom2d)
877 CALL create_oce_set(admm_gapw_env%oce)
878 CALL allocate_oce_set(admm_gapw_env%oce, nkind)
881 CALL build_oce_matrices(admm_gapw_env%oce%intac, calculate_forces=.true., nder=1, &
882 qs_kind_set=admm_kind_set, particle_set=particle_set, &
883 sap_oce=sap_oce, eps_fit=dft_control%qs_control%gapw_control%eps_fit)
885 CALL release_neighbor_list_sets(sap_oce)
887 CALL timestop(handle)
889 END SUBROUTINE update_admm_gapw
896 SUBROUTINE admm_alloc_ks_matrices(admm_env, qs_env)
898 TYPE(admm_type),
POINTER :: admm_env
899 TYPE(qs_environment_type),
POINTER :: qs_env
901 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_alloc_ks_matrices'
903 INTEGER :: handle, ic, ispin
904 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_aux_fit_dft_kp, &
905 matrix_ks_aux_fit_hfx_kp, &
906 matrix_ks_aux_fit_kp, &
908 TYPE(dft_control_type),
POINTER :: dft_control
910 NULLIFY (dft_control, matrix_s_aux_fit_kp, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp)
912 CALL timeset(routinen, handle)
914 CALL get_qs_env(qs_env, dft_control=dft_control)
915 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
917 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit)
918 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_dft)
919 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_hfx)
921 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_kp, dft_control%nspins, dft_control%nimages)
922 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_dft_kp, dft_control%nspins, dft_control%nimages)
923 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_hfx_kp, dft_control%nspins, dft_control%nimages)
925 DO ispin = 1, dft_control%nspins
926 DO ic = 1, dft_control%nimages
927 ALLOCATE (matrix_ks_aux_fit_kp(ispin, ic)%matrix)
928 CALL dbcsr_create(matrix_ks_aux_fit_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, ic)%matrix, &
929 name=
"KOHN-SHAM_MATRIX for ADMM")
930 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
931 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, ic)%matrix, 0.0_dp)
933 ALLOCATE (matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix)
934 CALL dbcsr_create(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
935 name=
"KOHN-SHAM_MATRIX for ADMM")
936 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
937 CALL dbcsr_set(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, 0.0_dp)
939 ALLOCATE (matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix)
940 CALL dbcsr_create(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
941 name=
"KOHN-SHAM_MATRIX for ADMM")
942 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
943 CALL dbcsr_set(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, 0.0_dp)
947 CALL set_admm_env(admm_env, &
948 matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
949 matrix_ks_aux_fit_dft_kp=matrix_ks_aux_fit_dft_kp, &
950 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
952 CALL timestop(handle)
954 END SUBROUTINE admm_alloc_ks_matrices
964 TYPE(qs_environment_type),
POINTER :: qs_env
965 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
966 TYPE(qs_energy_type),
POINTER :: energy
967 LOGICAL,
INTENT(in) :: calculate_forces
969 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix_kp'
971 INTEGER :: handle, img, irep, ispin, n_rep_hf, &
973 LOGICAL :: do_adiabatic_rescaling, &
974 s_mstruct_changed, use_virial
975 REAL(dp) :: eh1, ehfx, eold
976 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
977 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_aux_fit_im, matrix_ks_im
978 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_ks_aux_fit_hfx_kp, &
979 matrix_ks_aux_fit_kp, matrix_ks_orb, &
981 TYPE(dft_control_type),
POINTER :: dft_control
982 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
983 TYPE(mp_para_env_type),
POINTER :: para_env
984 TYPE(pw_env_type),
POINTER :: pw_env
985 TYPE(pw_poisson_type),
POINTER :: poisson_env
986 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
987 TYPE(qs_rho_type),
POINTER :: rho_orb
988 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
990 TYPE(virial_type),
POINTER :: virial
992 CALL timeset(routinen, handle)
994 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
995 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
996 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_ks_aux_fit_kp, &
997 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx_kp)
999 CALL get_qs_env(qs_env=qs_env, &
1000 dft_control=dft_control, &
1002 matrix_h_kp=matrix_h, &
1003 para_env=para_env, &
1006 matrix_ks_im=matrix_ks_im, &
1007 s_mstruct_changed=s_mstruct_changed, &
1011 IF (qs_env%run_rtp) cpabort(
"No RTP implementation with K-points HFX")
1014 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1015 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1016 IF (do_adiabatic_rescaling) cpabort(
"No adiabatic rescaling implementation with K-points HFX")
1018 IF (dft_control%do_admm)
THEN
1019 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
1020 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, &
1021 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
1024 nspins = dft_control%nspins
1025 nimages = dft_control%nimages
1027 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1028 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1030 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1031 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1034 IF (dft_control%do_admm)
THEN
1035 DO ispin = 1, nspins
1037 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, img)%matrix, 0.0_dp)
1041 DO ispin = 1, nspins
1043 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1047 ALLOCATE (hf_energy(n_rep_hf))
1051 DO irep = 1, n_rep_hf
1054 IF (dft_control%do_admm)
THEN
1055 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_orb, rho_aux_fit=rho_orb)
1057 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1059 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1064 IF (.NOT. x_data(irep, 1)%do_hfx_ri)
THEN
1065 cpabort(
"Only RI-HFX is implemented for K-points")
1068 CALL hfx_ri_update_ks_kp(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1069 rho_ao_orb, s_mstruct_changed, nspins, &
1070 x_data(irep, 1)%general_parameter%fraction)
1072 IF (calculate_forces)
THEN
1074 IF (dft_control%do_admm)
THEN
1075 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1078 CALL hfx_ri_update_forces_kp(qs_env, x_data(irep, 1)%ri_data, nspins, &
1079 x_data(irep, 1)%general_parameter%fraction, &
1080 rho_ao_orb, use_virial=use_virial)
1082 IF (dft_control%do_admm)
THEN
1083 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1087 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
1089 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1098 DO ispin = 1, nspins
1100 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1104 IF (use_virial .AND. calculate_forces)
THEN
1105 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1106 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1107 virial%pv_calculate = .false.
1111 IF (dft_control%do_admm)
THEN
1112 DO ispin = 1, nspins
1114 CALL dbcsr_add(matrix_ks_aux_fit_hfx_kp(ispin, img)%matrix, matrix_ks_aux_fit_kp(ispin, img)%matrix, &
1120 CALL timestop(handle)
1141 just_energy, v_rspace_new, v_tau_rspace, ext_xc_section)
1143 TYPE(qs_environment_type),
POINTER :: qs_env
1144 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
1145 TYPE(qs_rho_type),
POINTER :: rho
1146 TYPE(qs_energy_type),
POINTER :: energy
1147 LOGICAL,
INTENT(in) :: calculate_forces, just_energy
1148 TYPE(pw_r3d_rs_type),
DIMENSION(:),
POINTER :: v_rspace_new, v_tau_rspace
1149 TYPE(section_vals_type),
OPTIONAL,
POINTER :: ext_xc_section
1151 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix'
1153 INTEGER :: handle, img, irep, ispin, mspin, &
1154 n_rep_hf, nimages, ns, nspins
1155 LOGICAL :: distribute_fock_matrix, &
1156 do_adiabatic_rescaling, &
1157 hfx_treat_lsd_in_core, &
1158 s_mstruct_changed, use_virial
1159 REAL(dp) :: eh1, ehfx, ehfxrt, eold
1160 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
1161 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_1d, matrix_ks_aux_fit, &
1162 matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_im, matrix_ks_im, rho_ao_1d, rho_ao_resp
1163 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_h_im, matrix_ks_orb, &
1165 TYPE(dft_control_type),
POINTER :: dft_control
1166 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1167 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mo_array
1168 TYPE(mp_para_env_type),
POINTER :: para_env
1169 TYPE(pw_env_type),
POINTER :: pw_env
1170 TYPE(pw_poisson_type),
POINTER :: poisson_env
1171 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
1172 TYPE(qs_rho_type),
POINTER :: rho_orb
1173 TYPE(rt_prop_type),
POINTER :: rtp
1174 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
1176 TYPE(virial_type),
POINTER :: virial
1178 CALL timeset(routinen, handle)
1180 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
1181 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
1182 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_h_im, matrix_ks_aux_fit, &
1183 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx)
1185 CALL get_qs_env(qs_env=qs_env, &
1186 dft_control=dft_control, &
1188 matrix_h_kp=matrix_h, &
1189 matrix_h_im_kp=matrix_h_im, &
1190 para_env=para_env, &
1193 matrix_ks_im=matrix_ks_im, &
1194 s_mstruct_changed=s_mstruct_changed, &
1197 IF (dft_control%do_admm)
THEN
1198 CALL get_admm_env(qs_env%admm_env, mos_aux_fit=mo_array, matrix_ks_aux_fit=matrix_ks_aux_fit, &
1199 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx=matrix_ks_aux_fit_hfx)
1201 CALL get_qs_env(qs_env=qs_env, mos=mo_array)
1204 nspins = dft_control%nspins
1205 nimages = dft_control%nimages
1207 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1209 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1211 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1212 IF (
PRESENT(ext_xc_section)) hfx_sections => section_vals_get_subs_vals(ext_xc_section,
"HF")
1214 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1215 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
1217 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1218 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1221 IF (dft_control%do_admm)
THEN
1222 DO ispin = 1, nspins
1223 CALL dbcsr_set(matrix_ks_aux_fit(ispin)%matrix, 0.0_dp)
1226 DO ispin = 1, nspins
1228 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1232 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1234 ALLOCATE (hf_energy(n_rep_hf))
1238 DO irep = 1, n_rep_hf
1242 IF (do_adiabatic_rescaling .AND. hfx_treat_lsd_in_core) &
1243 cpabort(
"HFX_TREAT_LSD_IN_CORE not implemented for adiabatically rescaled hybrids")
1245 distribute_fock_matrix = .NOT. do_adiabatic_rescaling
1248 IF (hfx_treat_lsd_in_core) mspin = nspins
1251 IF (dft_control%do_admm)
THEN
1252 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit=matrix_ks_1d, rho_aux_fit=rho_orb)
1253 ns =
SIZE(matrix_ks_1d)
1254 matrix_ks_orb(1:ns, 1:1) => matrix_ks_1d(1:ns)
1256 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1258 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1262 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1264 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1265 mo_array, rho_ao_orb, &
1266 s_mstruct_changed, nspins, &
1267 x_data(irep, 1)%general_parameter%fraction)
1268 IF (dft_control%do_admm)
THEN
1270 DO ispin = 1, nspins
1271 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1272 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1279 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1280 para_env, s_mstruct_changed, irep, distribute_fock_matrix, &
1286 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1288 IF (dft_control%do_admm)
THEN
1289 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1291 NULLIFY (rho_ao_resp)
1293 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1295 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1296 x_data(irep, 1)%general_parameter%fraction, &
1297 rho_ao=rho_ao_orb, mos=mo_array, &
1298 rho_ao_resp=rho_ao_resp, &
1299 use_virial=use_virial)
1303 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1304 para_env, irep, use_virial)
1309 IF (dft_control%do_admm)
THEN
1310 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1315 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx
1319 IF (qs_env%run_rtp)
THEN
1321 CALL get_qs_env(qs_env=qs_env, rtp=rtp)
1322 DO ispin = 1, nspins
1323 CALL dbcsr_set(matrix_ks_im(ispin)%matrix, 0.0_dp)
1325 IF (dft_control%do_admm)
THEN
1327 ns =
SIZE(matrix_ks_aux_fit_im)
1328 matrix_ks_orb(1:ns, 1:1) => matrix_ks_aux_fit_im(1:ns)
1329 DO ispin = 1, nspins
1330 CALL dbcsr_set(matrix_ks_aux_fit_im(ispin)%matrix, 0.0_dp)
1334 ns =
SIZE(matrix_ks_im)
1335 matrix_ks_orb(1:ns, 1:1) => matrix_ks_im(1:ns)
1338 CALL qs_rho_get(rho_orb, rho_ao_im=rho_ao_1d)
1339 ns =
SIZE(rho_ao_1d)
1340 rho_ao_orb(1:ns, 1:1) => rho_ao_1d(1:ns)
1344 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1345 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1346 mo_array, rho_ao_orb, &
1348 x_data(irep, 1)%general_parameter%fraction)
1349 IF (dft_control%do_admm)
THEN
1351 DO ispin = 1, nspins
1352 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1353 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1359 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1360 para_env, .false., irep, distribute_fock_matrix, &
1362 ehfxrt = ehfxrt + eh1
1366 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1367 NULLIFY (rho_ao_resp)
1369 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1371 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1372 x_data(irep, 1)%general_parameter%fraction, &
1373 rho_ao=rho_ao_orb, mos=mo_array, &
1374 use_virial=use_virial)
1377 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1378 para_env, irep, use_virial)
1383 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx + ehfxrt
1385 IF (dft_control%rtp_control%velocity_gauge)
THEN
1386 cpassert(
ASSOCIATED(matrix_h_im))
1387 DO ispin = 1, nspins
1388 CALL dbcsr_add(matrix_ks_im(ispin)%matrix, matrix_h_im(1, 1)%matrix, &
1395 IF (.NOT. qs_env%run_rtp)
THEN
1396 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1397 poisson_env=poisson_env)
1399 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1406 energy%ex = ehfx + ehfxrt
1409 DO ispin = 1, nspins
1411 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1415 IF (use_virial .AND. calculate_forces)
THEN
1416 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1417 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1418 virial%pv_calculate = .false.
1422 IF (do_adiabatic_rescaling)
THEN
1423 CALL rescale_xc_potential(qs_env, matrix_ks, rho, energy, v_rspace_new, v_tau_rspace, &
1424 hf_energy, just_energy, calculate_forces, use_virial)
1428 IF (dft_control%do_admm)
THEN
1429 DO ispin = 1, nspins
1430 CALL dbcsr_add(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_aux_fit(ispin)%matrix, &
1435 CALL timestop(handle)
1469 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1470 TYPE(section_vals_type),
POINTER :: xc_section
1471 TYPE(admm_type),
POINTER :: admm_env
1473 LOGICAL,
PARAMETER :: debug_functional = .false.
1474#if defined (__LIBXC)
1475 REAL(kind=dp),
PARAMETER :: x_factor_c = 0.930525736349100025_dp
1478 CHARACTER(LEN=20) :: name_x_func
1479 INTEGER :: hfx_potential_type, ifun, iounit, nfun
1480 LOGICAL :: funct_found
1481 REAL(dp) :: cutoff_radius, hfx_fraction, omega, &
1482 scale_coulomb, scale_longrange, scale_x
1483 TYPE(cp_logger_type),
POINTER :: logger
1484 TYPE(section_vals_type),
POINTER :: xc_fun, xc_fun_section
1486 logger => cp_get_default_logger()
1487 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
1490 CALL section_vals_duplicate(xc_section, admm_env%xc_section_aux)
1491 CALL section_vals_duplicate(xc_section, admm_env%xc_section_primary)
1494 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
1497 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1498 i_val=xc_funct_no_shortcut)
1505 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1506 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1512 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=1)
1513 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1514 CALL section_vals_remove_values(xc_fun)
1517 IF (
ASSOCIATED(x_data))
THEN
1518 hfx_potential_type = x_data(1, 1)%potential_parameter%potential_type
1519 hfx_fraction = x_data(1, 1)%general_parameter%fraction
1521 cpwarn(
"ADMM requested without a DFT%XC%HF section. It will be ignored for the SCF.")
1522 admm_env%aux_exch_func = do_admm_aux_exch_func_none
1526 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_none)
THEN
1527 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1529 hfx_fraction = 0.0_dp
1530 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default)
THEN
1533 SELECT CASE (hfx_potential_type)
1534 CASE (do_potential_coulomb)
1535 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1537 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1538 r_val=-hfx_fraction)
1539 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1541 CASE (do_potential_short)
1542 omega = x_data(1, 1)%potential_parameter%omega
1543 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1545 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1546 r_val=-hfx_fraction)
1547 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1549 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1551 CASE (do_potential_truncated)
1552 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1553 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1555 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1557 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1558 r_val=cutoff_radius)
1559 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1561 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1563 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1564 r_val=-hfx_fraction)
1565 CASE (do_potential_long)
1566 omega = x_data(1, 1)%potential_parameter%omega
1567 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1569 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1571 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1572 r_val=-hfx_fraction)
1573 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1575 CASE (do_potential_mix_cl)
1576 omega = x_data(1, 1)%potential_parameter%omega
1577 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1578 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1579 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1581 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1582 r_val=hfx_fraction*scale_longrange)
1583 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1584 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1585 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1587 CASE (do_potential_mix_cl_trunc)
1588 omega = x_data(1, 1)%potential_parameter%omega
1589 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1590 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1591 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1592 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1594 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1595 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1596 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1597 r_val=cutoff_radius)
1598 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1600 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1601 r_val=hfx_fraction*scale_longrange)
1602 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1603 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1604 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1607 cpabort(
"Unknown potential operator!")
1611 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1613 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1614 i_val=xc_funct_no_shortcut)
1616 SELECT CASE (hfx_potential_type)
1617 CASE (do_potential_coulomb)
1619 funct_found = .false.
1622 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1623 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1624 IF (xc_fun%section%name ==
"PBE")
THEN
1625 funct_found = .true.
1628 IF (.NOT. funct_found)
THEN
1629 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1631 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1633 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1636 CALL section_vals_val_get(xc_fun_section,
"PBE%SCALE_X", &
1638 scale_x = scale_x + hfx_fraction
1639 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1642 CASE (do_potential_short)
1643 omega = x_data(1, 1)%potential_parameter%omega
1645 funct_found = .false.
1648 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1649 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1650 IF (xc_fun%section%name ==
"XWPBE")
THEN
1651 funct_found = .true.
1654 IF (.NOT. funct_found)
THEN
1655 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1657 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1659 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1661 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1664 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1666 scale_x = scale_x + hfx_fraction
1667 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1670 CASE (do_potential_long)
1671 omega = x_data(1, 1)%potential_parameter%omega
1673 funct_found = .false.
1676 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1677 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1678 IF (xc_fun%section%name ==
"XWPBE")
THEN
1679 funct_found = .true.
1682 IF (.NOT. funct_found)
THEN
1683 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1685 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1686 r_val=-hfx_fraction)
1687 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1689 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1692 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1694 scale_x = scale_x - hfx_fraction
1695 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1697 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1699 scale_x = scale_x + hfx_fraction
1700 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1703 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1706 CASE (do_potential_truncated)
1707 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1709 funct_found = .false.
1712 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1713 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1714 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1715 funct_found = .true.
1718 IF (.NOT. funct_found)
THEN
1719 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1721 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1722 r_val=-hfx_fraction)
1723 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1724 r_val=cutoff_radius)
1726 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1728 scale_x = scale_x - hfx_fraction
1729 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1731 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1732 r_val=cutoff_radius)
1735 funct_found = .false.
1738 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1739 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1740 IF (xc_fun%section%name ==
"XWPBE")
THEN
1741 funct_found = .true.
1744 IF (.NOT. funct_found)
THEN
1745 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1747 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1749 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1753 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1755 scale_x = scale_x + hfx_fraction
1756 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1759 CASE (do_potential_mix_cl_trunc)
1760 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1761 omega = x_data(1, 1)%potential_parameter%omega
1762 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1763 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1765 funct_found = .false.
1768 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1769 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1770 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1771 funct_found = .true.
1774 IF (.NOT. funct_found)
THEN
1775 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1777 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1778 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
1779 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1780 r_val=cutoff_radius)
1783 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1785 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
1786 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1788 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1789 r_val=cutoff_radius)
1792 funct_found = .false.
1795 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1796 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1797 IF (xc_fun%section%name ==
"XWPBE")
THEN
1798 funct_found = .true.
1801 IF (.NOT. funct_found)
THEN
1802 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1804 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1805 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1806 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1807 r_val=-hfx_fraction*scale_longrange)
1808 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1812 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1814 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1815 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1817 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1819 scale_x = scale_x - hfx_fraction*scale_longrange
1820 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1823 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1826 CASE (do_potential_mix_cl)
1827 omega = x_data(1, 1)%potential_parameter%omega
1828 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1829 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1831 funct_found = .false.
1834 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1835 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1836 IF (xc_fun%section%name ==
"XWPBE")
THEN
1837 funct_found = .true.
1840 IF (.NOT. funct_found)
THEN
1841 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1843 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1844 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1845 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1846 r_val=-hfx_fraction*scale_longrange)
1847 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1851 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1853 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1854 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1857 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1859 scale_x = scale_x - hfx_fraction*scale_longrange
1860 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1863 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1867 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default_libxc)
THEN
1870#if defined (__LIBXC)
1871 SELECT CASE (hfx_potential_type)
1872 CASE (do_potential_coulomb)
1873 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1875 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1876 r_val=-hfx_fraction)
1877 CASE (do_potential_short)
1878 omega = x_data(1, 1)%potential_parameter%omega
1879 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1881 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1882 r_val=-hfx_fraction)
1883 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1885 CASE (do_potential_truncated)
1886 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1887 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1889 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1891 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1892 r_val=cutoff_radius)
1893 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1895 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1896 r_val=-hfx_fraction)
1897 CASE (do_potential_long)
1898 omega = x_data(1, 1)%potential_parameter%omega
1899 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1901 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1903 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1905 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1907 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1908 r_val=-hfx_fraction)
1909 CASE (do_potential_mix_cl)
1910 omega = x_data(1, 1)%potential_parameter%omega
1911 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1912 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1913 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1915 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1916 r_val=hfx_fraction*scale_longrange)
1917 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1919 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1921 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1922 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1923 CASE (do_potential_mix_cl_trunc)
1924 omega = x_data(1, 1)%potential_parameter%omega
1925 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1926 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1927 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1928 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1930 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1931 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1932 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1933 r_val=cutoff_radius)
1934 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1936 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1937 r_val=hfx_fraction*scale_longrange)
1938 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1940 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1942 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1943 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1945 cpabort(
"Unknown potential operator!")
1949 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1951 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1952 i_val=xc_funct_no_shortcut)
1954 SELECT CASE (hfx_potential_type)
1955 CASE (do_potential_coulomb)
1957 funct_found = .false.
1960 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1961 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1962 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
1963 funct_found = .true.
1966 IF (.NOT. funct_found)
THEN
1967 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1969 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1972 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
1974 scale_x = scale_x + hfx_fraction
1975 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1978 CASE (do_potential_short)
1979 omega = x_data(1, 1)%potential_parameter%omega
1981 funct_found = .false.
1984 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1985 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1986 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
1987 funct_found = .true.
1990 IF (.NOT. funct_found)
THEN
1991 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1993 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1995 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1998 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2000 scale_x = scale_x + hfx_fraction
2001 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2004 CASE (do_potential_long)
2005 omega = x_data(1, 1)%potential_parameter%omega
2007 funct_found = .false.
2010 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2011 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2012 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2013 funct_found = .true.
2016 IF (.NOT. funct_found)
THEN
2017 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2019 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2020 r_val=-hfx_fraction)
2021 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2024 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2026 scale_x = scale_x - hfx_fraction
2027 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2030 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2034 funct_found = .false.
2037 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2038 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2039 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2040 funct_found = .true.
2043 IF (.NOT. funct_found)
THEN
2044 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2046 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2049 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2051 scale_x = scale_x + hfx_fraction
2052 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2055 CASE (do_potential_truncated)
2056 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2058 funct_found = .false.
2061 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2062 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2063 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2064 funct_found = .true.
2067 IF (.NOT. funct_found)
THEN
2068 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2070 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2071 r_val=-hfx_fraction)
2072 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2073 r_val=cutoff_radius)
2076 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2078 scale_x = scale_x - hfx_fraction
2079 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2081 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2082 r_val=cutoff_radius)
2085 funct_found = .false.
2088 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2089 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2090 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2091 funct_found = .true.
2094 IF (.NOT. funct_found)
THEN
2095 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2097 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2101 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2103 scale_x = scale_x + hfx_fraction
2104 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2107 CASE (do_potential_mix_cl_trunc)
2108 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2109 omega = x_data(1, 1)%potential_parameter%omega
2110 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2111 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2113 funct_found = .false.
2116 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2117 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2118 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2119 funct_found = .true.
2122 IF (.NOT. funct_found)
THEN
2123 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2125 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2126 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
2127 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2128 r_val=cutoff_radius)
2131 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2133 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
2134 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2136 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2137 r_val=cutoff_radius)
2140 funct_found = .false.
2143 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2144 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2145 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2146 funct_found = .true.
2149 IF (.NOT. funct_found)
THEN
2150 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2152 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2153 r_val=-hfx_fraction*scale_longrange)
2154 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2158 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2160 scale_x = scale_x - hfx_fraction*scale_longrange
2161 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2164 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2168 funct_found = .false.
2171 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2172 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2173 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2174 funct_found = .true.
2177 IF (.NOT. funct_found)
THEN
2178 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2180 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2181 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2183 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2185 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2186 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2189 CASE (do_potential_mix_cl)
2190 omega = x_data(1, 1)%potential_parameter%omega
2191 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2192 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2194 funct_found = .false.
2197 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2198 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2199 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2200 funct_found = .true.
2203 IF (.NOT. funct_found)
THEN
2204 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2206 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2207 r_val=-hfx_fraction*scale_longrange)
2208 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2212 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2214 scale_x = scale_x - hfx_fraction*scale_longrange
2215 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2218 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2222 funct_found = .false.
2225 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2226 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2227 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2228 funct_found = .true.
2231 IF (.NOT. funct_found)
THEN
2232 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2234 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2235 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2237 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2239 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2240 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2245 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2246 "exchange correction functionals, you have to compile and link against LibXC!")
2250 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex .OR. &
2251 admm_env%aux_exch_func == do_admm_aux_exch_func_opt .OR. &
2252 admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2253 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2255 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2256 name_x_func =
'OPTX'
2257 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2258 name_x_func =
'BECKE88'
2261 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2263 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2264 r_val=-hfx_fraction)
2266 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2267 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", r_val=0.0_dp)
2270 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2271 IF (admm_env%aux_exch_func_param)
THEN
2272 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2273 r_val=admm_env%aux_x_param(1))
2274 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2275 r_val=admm_env%aux_x_param(2))
2276 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2277 r_val=admm_env%aux_x_param(3))
2282 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2285 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2286 i_val=xc_funct_no_shortcut)
2289 funct_found = .false.
2292 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2293 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2294 IF (xc_fun%section%name == trim(name_x_func))
THEN
2295 funct_found = .true.
2298 IF (.NOT. funct_found)
THEN
2299 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2301 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2303 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2304 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", &
2306 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2307 IF (admm_env%aux_exch_func_param)
THEN
2308 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2309 r_val=admm_env%aux_x_param(1))
2310 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2311 r_val=admm_env%aux_x_param(2))
2312 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2313 r_val=admm_env%aux_x_param(3))
2318 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2320 scale_x = scale_x + hfx_fraction
2321 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2323 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2324 cpassert(.NOT. admm_env%aux_exch_func_param)
2328 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc .OR. &
2329 admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc .OR. &
2330 admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc .OR. &
2331 admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2333 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc)
THEN
2334 name_x_func =
'GGA_X_PBE'
2335 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2336 name_x_func =
'GGA_X_OPTX'
2337 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2338 name_x_func =
'GGA_X_B88'
2339 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc)
THEN
2340 name_x_func =
'LDA_X'
2343 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2345 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2346 r_val=-hfx_fraction)
2348 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2349 IF (admm_env%aux_exch_func_param)
THEN
2350 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2351 r_val=admm_env%aux_x_param(1))
2353 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2354 r_val=admm_env%aux_x_param(2)/x_factor_c)
2355 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2356 r_val=admm_env%aux_x_param(3))
2361 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2364 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2365 i_val=xc_funct_no_shortcut)
2368 funct_found = .false.
2371 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2372 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2373 IF (xc_fun%section%name == trim(name_x_func))
THEN
2374 funct_found = .true.
2377 IF (.NOT. funct_found)
THEN
2378 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2380 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2382 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2383 IF (admm_env%aux_exch_func_param)
THEN
2384 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2385 r_val=admm_env%aux_x_param(1))
2387 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2388 r_val=admm_env%aux_x_param(2)/x_factor_c)
2389 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2390 r_val=admm_env%aux_x_param(3))
2395 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2397 scale_x = scale_x + hfx_fraction
2398 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2400 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2401 cpassert(.NOT. admm_env%aux_exch_func_param)
2405 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2406 "exchange correction functionals, you have to compile and link against LibXC!")
2410 cpabort(
"Unknown exchange correction functional!")
2413 IF (debug_functional)
THEN
2414 iounit = cp_logger_get_default_io_unit(logger)
2415 IF (iounit > 0)
THEN
2416 WRITE (iounit,
"(A)")
" ADMM Primary Basis Set Functional"
2418 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2420 funct_found = .false.
2423 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2424 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2426 scale_x = -1000.0_dp
2427 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2428 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2430 IF (xc_fun%section%name ==
"XWPBE")
THEN
2431 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2432 IF (iounit > 0)
THEN
2433 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2436 IF (iounit > 0)
THEN
2437 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2442 IF (iounit > 0)
THEN
2443 WRITE (iounit,
"(A)")
" Auxiliary Basis Set Functional"
2445 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
2447 funct_found = .false.
2450 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2451 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2452 scale_x = -1000.0_dp
2453 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2454 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2456 IF (xc_fun%section%name ==
"XWPBE")
THEN
2457 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2458 IF (iounit > 0)
THEN
2459 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2462 IF (iounit > 0)
THEN
2463 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2486 external_hfx_sections, external_x_data, external_para_env)
2487 TYPE(dbcsr_p_type),
DIMENSION(:),
INTENT(INOUT), &
2488 TARGET :: matrix_ks, rho_ao
2489 TYPE(qs_environment_type),
POINTER :: qs_env
2490 LOGICAL,
INTENT(IN),
OPTIONAL :: update_energy, recalc_integrals
2491 TYPE(section_vals_type),
OPTIONAL,
POINTER :: external_hfx_sections
2492 TYPE(hfx_type),
DIMENSION(:, :),
OPTIONAL,
TARGET :: external_x_data
2493 TYPE(mp_para_env_type),
OPTIONAL,
POINTER :: external_para_env
2495 CHARACTER(LEN=*),
PARAMETER :: routinen =
'tddft_hfx_matrix'
2497 INTEGER :: handle, irep, ispin, mspin, n_rep_hf, &
2499 LOGICAL :: distribute_fock_matrix, &
2500 hfx_treat_lsd_in_core, &
2501 my_update_energy, s_mstruct_changed
2502 REAL(kind=dp) :: eh1, ehfx
2503 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_kp, rho_ao_kp
2504 TYPE(dft_control_type),
POINTER :: dft_control
2505 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
2506 TYPE(mp_para_env_type),
POINTER :: para_env
2507 TYPE(qs_energy_type),
POINTER :: energy
2508 TYPE(section_vals_type),
POINTER :: hfx_sections, input
2510 CALL timeset(routinen, handle)
2512 NULLIFY (dft_control, hfx_sections, input, para_env, matrix_ks_kp, rho_ao_kp)
2514 CALL get_qs_env(qs_env=qs_env, &
2515 dft_control=dft_control, &
2518 para_env=para_env, &
2519 s_mstruct_changed=s_mstruct_changed, &
2523 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
2525 IF (
PRESENT(external_hfx_sections)) hfx_sections => external_hfx_sections
2526 IF (
PRESENT(external_x_data)) x_data => external_x_data
2527 IF (
PRESENT(external_para_env)) para_env => external_para_env
2529 my_update_energy = .true.
2530 IF (
PRESENT(update_energy)) my_update_energy = update_energy
2532 IF (
PRESENT(recalc_integrals)) s_mstruct_changed = recalc_integrals
2534 cpassert(dft_control%nimages == 1)
2535 nspins = dft_control%nspins
2537 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2538 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
2541 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2542 distribute_fock_matrix = .true.
2545 IF (hfx_treat_lsd_in_core) mspin = nspins
2547 matrix_ks_kp(1:nspins, 1:1) => matrix_ks(1:nspins)
2548 rho_ao_kp(1:nspins, 1:1) => rho_ao(1:nspins)
2550 DO irep = 1, n_rep_hf
2554 IF (x_data(irep, 1)%do_hfx_ri)
THEN
2555 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_kp, ehfx, &
2556 rho_ao=rho_ao_kp, geometry_did_change=s_mstruct_changed, &
2557 nspins=nspins, hf_fraction=x_data(irep, 1)%general_parameter%fraction)
2561 CALL integrate_four_center(qs_env, x_data, matrix_ks_kp, eh1, rho_ao_kp, hfx_sections, para_env, &
2562 s_mstruct_changed, irep, distribute_fock_matrix, ispin=ispin)
2567 IF (my_update_energy) energy%ex = ehfx
2569 CALL timestop(handle)
Types and set/get functions for auxiliary density matrix methods.
subroutine, public admm_dm_create(admm_dm, admm_control, nspins, natoms)
Create a new admm_dm type.
Contains ADMM methods which require molecular orbitals.
subroutine, public scale_dm(qs_env, rho_ao_orb, scale_back)
Scale density matrix by gsi(ispin), is needed for force scaling in ADMMP.
subroutine, public kpoint_calc_admm_matrices(qs_env, calculate_forces)
Fill the ADMM overlp and basis change matrices in the KP env based on the real-space array.
Types and set/get functions for auxiliary density matrix methods.
subroutine, public get_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Get routine for the ADMM env.
subroutine, public set_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Set routine for the ADMM env.
subroutine, public admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit, blacs_env_ext)
creates ADMM environment, initializes the basic types
Define the atomic kind types and their sub types.
subroutine, public add_basis_set_to_container(container, basis_set, basis_set_type)
...
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
subroutine, public copy_gto_basis_set(basis_set_in, basis_set_out)
...
Handles all functions related to the CELL.
real(kind=dp) function, public plane_distance(h, k, l, cell)
Calculate the distance between two lattice planes as defined by a triple of Miller indices (hkl).
methods related to the blacs parallel environment
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_init_p(matrix)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_add(matrix_a, matrix_b, alpha_scalar, beta_scalar)
...
Routines that link DBCSR and CP2K concepts together.
subroutine, public cp_dbcsr_alloc_block_from_nbl(matrix, sab_orb, desymmetrize)
allocate the blocks of a dbcsr based on the neighbor list
DBCSR operations in CP2K.
subroutine, public cp_dbcsr_m_by_n_from_row_template(matrix, template, n, sym)
Utility function to create dbcsr matrix, m x n matrix (n arbitrary) with the same processor grid and ...
pool for for elements that are retained and released
represent the structure of a full matrix
subroutine, public cp_fm_struct_create(fmstruct, para_env, context, nrow_global, ncol_global, nrow_block, ncol_block, descriptor, first_p_pos, local_leading_dimension, template_fmstruct, square_blocks, force_block)
allocates and initializes a full matrix structure
subroutine, public cp_fm_struct_release(fmstruct)
releases a full matrix structure
represent a full matrix distributed on many processors
subroutine, public cp_fm_get_info(matrix, name, nrow_global, ncol_global, nrow_block, ncol_block, nrow_local, ncol_local, row_indices, col_indices, local_data, context, nrow_locals, ncol_locals, matrix_struct, para_env)
returns all kind of information about the full matrix
subroutine, public cp_fm_create(matrix, matrix_struct, name, use_sp, nrow, ncol, set_zero)
creates a new full matrix with the given structure
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
stores a lists of integer that are local to a processor. The idea is that these integers represent ob...
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
Definition of the atomic potential types.
Utilities for hfx and admm methods.
subroutine, public hfx_admm_init(qs_env, calculate_forces, ext_xc_section)
...
subroutine, public tddft_hfx_matrix(matrix_ks, rho_ao, qs_env, update_energy, recalc_integrals, external_hfx_sections, external_x_data, external_para_env)
Add the hfx contributions to the Hamiltonian.
subroutine, public aux_admm_init(qs_env, mos, admm_env, admm_control, basis_type)
Minimal setup routine for admm_env No forces No k-points No DFT correction terms.
subroutine, public hfx_ks_matrix(qs_env, matrix_ks, rho, energy, calculate_forces, just_energy, v_rspace_new, v_tau_rspace, ext_xc_section)
Add the hfx contributions to the Hamiltonian.
subroutine, public create_admm_xc_section(x_data, xc_section, admm_env)
This routine modifies the xc section depending on the potential type used for the HF exchange and the...
subroutine, public hfx_ks_matrix_kp(qs_env, matrix_ks, energy, calculate_forces)
Add the HFX K-point contribution to the real-space Hamiltonians.
Routines to calculate derivatives with respect to basis function origin.
subroutine, public derivatives_four_center(qs_env, rho_ao, rho_ao_resp, hfx_section, para_env, irep, use_virial, adiabatic_rescale_factor, resp_only, external_x_data, nspins)
computes four center derivatives for a full basis set and updates the forcesfock_4c arrays....
Routines to calculate HFX energy and potential.
subroutine, public integrate_four_center(qs_env, x_data, ks_matrix, ehfx, rho_ao, hfx_section, para_env, geometry_did_change, irep, distribute_fock_matrix, ispin, nspins)
computes four center integrals for a full basis set and updates the Kohn-Sham-Matrix and energy....
Test routines for HFX caclulations using PW.
subroutine, public pw_hfx(qs_env, ehfx, hfx_section, poisson_env, auxbas_pw_pool, irep)
computes the Hartree-Fock energy brute force in a pw basis
RI-methods for HFX and K-points. \auhtor Augustin Bussy (01.2023)
subroutine, public hfx_ri_update_forces_kp(qs_env, ri_data, nspins, hf_fraction, rho_ao, use_virial)
Update the K-points RI-HFX forces.
subroutine, public hfx_ri_update_ks_kp(qs_env, ri_data, ks_matrix, ehfx, rho_ao, geometry_did_change, nspins, hf_fraction)
Update the KS matrices for each real-space image.
subroutine, public hfx_ri_update_ks(qs_env, ri_data, ks_matrix, ehfx, mos, rho_ao, geometry_did_change, nspins, hf_fraction)
...
subroutine, public hfx_ri_update_forces(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, mos, use_virial, resp_only, rescale_factor)
the general routine that calls the relevant force code
Types and set/get functions for HFX.
Defines the basic variable types.
integer, parameter, public dp
Routines needed for kpoint calculation.
subroutine, public kpoint_initialize_mos(kpoint, mos, added_mos, for_aux_fit)
Initialize a set of MOs and density matrix for each kpoint (kpoint group)
Datatype to translate between k-points (2d) and gamma-point (1d) code.
subroutine, public kpoint_transitional_release(this)
Release the matrix set, using the right pointer.
subroutine, public set_2d_pointer(this, ptr_2d)
Assigns a 2D pointer.
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
2- and 3-center electron repulsion integral routines based on libint2 Currently available operators: ...
real(kind=dp), parameter, public cutoff_screen_factor
Collection of simple mathematical functions and subroutines.
subroutine, public erfc_cutoff(eps, omg, r_cutoff)
compute a truncation radius for the shortrange operator
Interface to the message passing library MPI.
Define the data structure for the molecule information.
Define the data structure for the particle information.
subroutine, public get_paw_proj_set(paw_proj_set, csprj, chprj, first_prj, first_prjs, last_prj, local_oce_sphi_h, local_oce_sphi_s, maxl, ncgauprj, nsgauprj, nsatbas, nsotot, nprj, o2nindex, n2oindex, rcprj, rzetprj, zisomin, zetprj)
Get informations about a paw projectors set.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
functions related to the poisson solver on regular grids
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, sab_cneo, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, rhoz_cneo_set, ecoul_1c, rho0_s_rs, rho0_s_gs, rhoz_cneo_s_rs, rhoz_cneo_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Get the QUICKSTEP environment.
subroutine, public set_qs_env(qs_env, super_cell, mos, qmmm, qmmm_periodic, ewald_env, ewald_pw, mpools, rho_external, external_vxc, mask, scf_control, rel_control, qs_charges, ks_env, ks_qmmm_env, wf_history, scf_env, active_space, input, oce, rho_atom_set, rho0_atom_set, rho0_mpole, run_rtp, rtp, rhoz_set, rhoz_tot, ecoul_1c, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, efield, rhoz_cneo_set, linres_control, xas_env, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, ls_scf_env, do_transport, transport_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, harris_env, gcp_env, mp2_env, bs_env, kg_env, force, kpoints, wanniercentres, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Set the QUICKSTEP environment.
Calculate the interaction radii for the operator matrix calculation.
subroutine, public init_interaction_radii(qs_control, qs_kind_set)
Initialize all the atomic kind radii for a given threshold value.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, cneo_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, monovalent, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public get_qs_kind_set(qs_kind_set, all_potential_present, tnadd_potential_present, gth_potential_present, sgp_potential_present, paw_atom_present, dft_plus_u_atom_present, maxcgf, maxsgf, maxco, maxco_proj, maxgtops, maxlgto, maxlprj, maxnset, maxsgf_set, ncgf, npgf, nset, nsgf, nshell, maxpol, maxlppl, maxlppnl, maxppnl, nelectron, maxder, max_ngrid_rad, max_sph_harm, maxg_iso_not0, lmax_rho0, basis_rcut, basis_type, total_zeff_corr, npgf_seg, cneo_potential_present, nkind_q, natom_q)
Get attributes of an atomic kind set.
subroutine, public init_gapw_nlcc(qs_kind_set)
...
subroutine, public init_gapw_basis_set(qs_kind_set, qs_control, force_env_section, modify_qs_control)
...
subroutine, public local_rho_set_create(local_rho_set)
...
wrapper for the pools of matrixes
subroutine, public mpools_get(mpools, ao_mo_fm_pools, ao_ao_fm_pools, mo_mo_fm_pools, ao_mosub_fm_pools, mosub_mosub_fm_pools, maxao_maxmo_fm_pool, maxao_maxao_fm_pool, maxmo_maxmo_fm_pool)
returns various attributes of the mpools (notably the pools contained in it)
Definition and initialisation of the mo data type.
subroutine, public allocate_mo_set(mo_set, nao, nmo, nelectron, n_el_f, maxocc, flexible_electron_count)
Allocates a mo set and partially initializes it (nao,nmo,nelectron, and flexible_electron_count are v...
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
subroutine, public init_mo_set(mo_set, fm_pool, fm_ref, fm_struct, name)
initializes an allocated mo_set. eigenvalues, mo_coeff, occupation_numbers are valid only after this ...
Define the neighbor list data types and the corresponding functionality.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
Generate the atomic neighbor lists.
subroutine, public atom2d_cleanup(atom2d)
free the internals of atom2d
subroutine, public pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
...
subroutine, public build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, mic, symmetric, molecular, subset_of_mol, current_subset, operator_type, nlname, atomb_to_keep)
Build simple pair neighbor lists.
subroutine, public write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, nl_type, middle_name, nlname)
Write a set of neighbor lists to the output unit.
subroutine, public atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, molecule_set, molecule_only, particle_set)
Build some distribution structure of atoms, refactored from build_qs_neighbor_lists.
Routines for the construction of the coefficients for the expansion of the atomic densities rho1_hard...
subroutine, public build_oce_matrices(intac, calculate_forces, nder, qs_kind_set, particle_set, sap_oce, eps_fit)
Set up the sparse matrix for the coefficients of one center expansions This routine uses the same log...
subroutine, public allocate_oce_set(oce_set, nkind)
Allocate and initialize the matrix set of oce coefficients.
subroutine, public create_oce_set(oce_set)
...
Calculation of overlap matrix, its derivatives and forces.
subroutine, public build_overlap_matrix(ks_env, matrix_s, matrixkp_s, matrix_name, nderivative, basis_type_a, basis_type_b, sab_nl, calculate_forces, matrix_p, matrixkp_p)
Calculation of the overlap matrix over Cartesian Gaussian functions.
subroutine, public init_rho_atom(rho_atom_set, atomic_kind_set, qs_kind_set, dft_control, para_env)
...
methods of the rho structure (defined in qs_rho_types)
subroutine, public qs_rho_rebuild(rho, qs_env, rebuild_ao, rebuild_grids, admm, pw_env_external)
rebuilds rho (if necessary allocating and initializing it)
superstucture that hold various representations of the density and keeps track of which ones are vali...
subroutine, public qs_rho_get(rho_struct, rho_ao, rho_ao_im, rho_ao_kp, rho_ao_im_kp, rho_r, drho_r, rho_g, drho_g, tau_r, tau_g, rho_r_valid, drho_r_valid, rho_g_valid, drho_g_valid, tau_r_valid, tau_g_valid, tot_rho_r, tot_rho_g, rho_r_sccs, soft_valid, complex_rho_ao)
returns info about the density described by this object. If some representation is not available an e...
subroutine, public qs_rho_create(rho)
Allocates a new instance of rho.
Types and set_get for real time propagation depending on runtype and diagonalization method different...
generate the tasks lists used by collocate and integrate routines
subroutine, public generate_qs_task_list(ks_env, task_list, basis_type, reorder_rs_grid_ranks, skip_load_balance_distributed, pw_env_external, sab_orb_external)
...
subroutine, public deallocate_task_list(task_list)
deallocates the components and the object itself
subroutine, public allocate_task_list(task_list)
allocates and initialised the components of the task_list_type
subroutine, public rescale_xc_potential(qs_env, ks_matrix, rho, energy, v_rspace_new, v_tau_rspace, hf_energy, just_energy, calculate_forces, use_virial)
A subtype of the admm_env that contains the extra data needed for an ADMM GAPW calculation.
stores some data used in wavefunction fitting
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
to create arrays of pools
keeps the information about the structure of a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
structure to store local (to a processor) ordered lists of integers.
distributes pairs on a 2d grid of processors
stores some data used in construction of Kohn-Sham matrix
Contains information about kpoints.
stores all the informations relevant to an mpi environment
contained for different pw related things
environment for the poisson solver
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Provides all information about a quickstep kind.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...
keeps the density in various representations, keeping track of which ones are valid.