43 dbcsr_type_no_symmetry
144#include "./base/base_uses.f90"
154 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'hfx_admm_utils'
166 LOGICAL,
INTENT(IN),
OPTIONAL :: calculate_forces
168 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_admm_init'
170 INTEGER :: handle, ispin, n_rep_hf, nao_aux_fit, &
171 natoms, nelectron, nmo
172 LOGICAL :: calc_forces, do_kpoints, &
173 s_mstruct_changed, use_virial
179 TYPE(
dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
182 TYPE(
mo_set_type),
DIMENSION(:),
POINTER :: mos, mos_aux_fit
184 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
189 CALL timeset(routinen, handle)
191 NULLIFY (admm_env, hfx_sections, mos, mos_aux_fit, para_env, virial, &
192 mo_coeff_aux_fit, xc_section, ks_env, dft_control, input, &
193 qs_kind_set, mo_coeff_b, aux_fit_fm_struct, blacs_env)
199 blacs_env=blacs_env, &
200 s_mstruct_changed=s_mstruct_changed, &
202 dft_control=dft_control, &
205 do_kpoints=do_kpoints)
207 calc_forces = .false.
208 IF (
PRESENT(calculate_forces)) calc_forces = .true.
214 cpabort(
"ADMM can handle only one HF section.")
216 IF (.NOT.
ASSOCIATED(admm_env))
THEN
218 CALL get_qs_env(qs_env, input=input, natom=natoms, qs_kind_set=qs_kind_set)
219 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=
"AUX_FIT")
220 CALL admm_env_create(admm_env, dft_control%admm_control, mos, para_env, natoms, nao_aux_fit)
227 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc) &
228 CALL init_admm_gapw(qs_env)
231 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
234 ALLOCATE (admm_env%rho_aux_fit)
236 ALLOCATE (admm_env%rho_aux_fit_buffer)
238 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
239 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
242 CALL admm_alloc_ks_matrices(admm_env, qs_env)
245 ALLOCATE (mos_aux_fit(dft_control%nspins))
246 DO ispin = 1, dft_control%nspins
247 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
251 nelectron=nelectron, &
252 n_el_f=real(nelectron,
dp), &
254 flexible_electron_count=dft_control%relax_multiplicity)
256 admm_env%mos_aux_fit => mos_aux_fit
258 DO ispin = 1, dft_control%nspins
261 nrow_global=nao_aux_fit, ncol_global=nmo)
262 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
263 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
264 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
265 name=
"qs_env%mo_aux_fit"//trim(adjustl(
cp_to_string(ispin))))
269 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
272 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
274 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
275 n=nmo, sym=dbcsr_type_no_symmetry)
279 IF (qs_env%requires_mo_derivs)
THEN
280 ALLOCATE (admm_env%mo_derivs_aux_fit(dft_control%nspins))
281 DO ispin = 1, dft_control%nspins
282 CALL get_mo_set(admm_env%mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit)
283 CALL cp_fm_create(admm_env%mo_derivs_aux_fit(ispin), mo_coeff_aux_fit%matrix_struct)
290 TYPE(
mo_set_type),
DIMENSION(:, :),
POINTER :: mos_aux_fit_kp
293 INTEGER :: ic, ik, ikk, is
294 INTEGER,
PARAMETER :: nwork1 = 4
295 LOGICAL :: use_real_wfn
297 NULLIFY (ao_mo_fm_pools_aux_fit, mos_aux_fit_kp)
299 CALL get_qs_env(qs_env=qs_env, kpoints=kpoints)
304 cpabort(
"Only ADMM_PURIFICATION_METHOD NONE implemeted for ADMM K-points")
307 cpabort(
"Only BASIS_PROJECTION and CHARGE_CONSTRAINED_PROJECTION implemented for KP")
308 IF (admm_env%do_admms .OR. admm_env%do_admmp .OR. admm_env%do_admmq)
THEN
309 IF (use_real_wfn) cpabort(
"Only KP-HFX ADMM2 is implemented with REAL wavefunctions")
314 CALL mpools_get(kpoints%mpools_aux_fit, ao_mo_fm_pools=ao_mo_fm_pools_aux_fit)
315 DO ik = 1,
SIZE(kpoints%kp_aux_env)
316 mos_aux_fit_kp => kpoints%kp_aux_env(ik)%kpoint_env%mos
317 ikk = kpoints%kp_range(1) + ik - 1
318 DO ispin = 1,
SIZE(mos_aux_fit_kp, 2)
319 DO ic = 1,
SIZE(mos_aux_fit_kp, 1)
320 CALL get_mo_set(mos_aux_fit_kp(ic, ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
323 cpassert(.NOT.
ASSOCIATED(mo_coeff_b))
325 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
327 fm_pool=ao_mo_fm_pools_aux_fit(ispin)%pool, &
335 ALLOCATE (admm_env%scf_work_aux_fit(nwork1))
339 nrow_global=nao_aux_fit, &
340 ncol_global=nao_aux_fit)
344 matrix_struct=ao_ao_fm_struct, &
345 name=
"SCF-WORK_MATRIX-AUX-"//trim(adjustl(
cp_to_string(is))))
355 ELSE IF (s_mstruct_changed)
THEN
356 CALL admm_init_hamiltonians(admm_env, qs_env,
"AUX_FIT")
357 CALL admm_update_s_mstruct(admm_env, qs_env,
"AUX_FIT")
358 CALL admm_alloc_ks_matrices(admm_env, qs_env)
359 IF (admm_env%do_gapw)
CALL update_admm_gapw(qs_env)
363 IF (admm_env%do_gapw .AND. dft_control%do_admm_dm)
THEN
364 cpabort(
"GAPW ADMM not implemented for MCWEENY or NONE_DM purification.")
369 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
370 IF (use_virial .AND. admm_env%do_admms .AND. dft_control%nspins == 2)
THEN
371 cpabort(
"ADMMS stress tensor is only available for closed-shell systems")
373 IF (use_virial .AND. admm_env%do_admmp .AND. dft_control%nspins == 2)
THEN
374 cpabort(
"ADMMP stress tensor is only available for closed-shell systems")
377 IF (dft_control%do_admm_dm .AND. .NOT.
ASSOCIATED(admm_env%admm_dm))
THEN
378 CALL admm_dm_create(admm_env%admm_dm, dft_control%admm_control, nspins=dft_control%nspins, natoms=natoms)
381 CALL timestop(handle)
398 TYPE(qs_environment_type),
POINTER :: qs_env
399 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos
400 TYPE(admm_type),
POINTER :: admm_env
401 TYPE(admm_control_type),
POINTER :: admm_control
402 CHARACTER(LEN=*) :: basis_type
404 CHARACTER(LEN=*),
PARAMETER :: routinen =
'aux_admm_init'
406 INTEGER :: handle, ispin, nao_aux_fit, natoms, &
408 LOGICAL :: do_kpoints
410 TYPE(cp_blacs_env_type),
POINTER :: blacs_env
411 TYPE(cp_fm_struct_type),
POINTER :: aux_fit_fm_struct
412 TYPE(cp_fm_type),
POINTER :: mo_coeff_aux_fit
413 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp
414 TYPE(dbcsr_type),
POINTER :: mo_coeff_b
415 TYPE(dft_control_type),
POINTER :: dft_control
416 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mos_aux_fit
417 TYPE(mp_para_env_type),
POINTER :: para_env
418 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
419 TYPE(qs_ks_env_type),
POINTER :: ks_env
421 CALL timeset(routinen, handle)
423 cpassert(.NOT.
ASSOCIATED(admm_env))
425 CALL get_qs_env(qs_env, &
427 blacs_env=blacs_env, &
429 dft_control=dft_control, &
430 do_kpoints=do_kpoints)
432 cpassert(.NOT. do_kpoints)
433 IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc)
THEN
434 cpabort(
"AUX ADMM not possible with GAPW")
438 CALL get_qs_env(qs_env, natom=natoms, qs_kind_set=qs_kind_set)
439 CALL get_qs_kind_set(qs_kind_set, nsgf=nao_aux_fit, basis_type=basis_type)
441 CALL admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit)
443 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
445 CALL admm_init_hamiltonians(admm_env, qs_env, basis_type)
446 NULLIFY (admm_env%rho_aux_fit, admm_env%rho_aux_fit_buffer)
448 CALL admm_alloc_ks_matrices(admm_env, qs_env)
450 ALLOCATE (mos_aux_fit(dft_control%nspins))
451 DO ispin = 1, dft_control%nspins
452 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo, nelectron=nelectron, maxocc=maxocc)
453 CALL allocate_mo_set(mo_set=mos_aux_fit(ispin), nao=nao_aux_fit, nmo=nmo, &
454 nelectron=nelectron, n_el_f=real(nelectron, dp), &
455 maxocc=maxocc, flexible_electron_count=0.0_dp)
457 admm_env%mos_aux_fit => mos_aux_fit
459 DO ispin = 1, dft_control%nspins
460 CALL get_mo_set(mo_set=mos(ispin), nmo=nmo)
461 CALL cp_fm_struct_create(aux_fit_fm_struct, context=blacs_env, para_env=para_env, &
462 nrow_global=nao_aux_fit, ncol_global=nmo)
463 CALL get_mo_set(mos_aux_fit(ispin), mo_coeff=mo_coeff_aux_fit, mo_coeff_b=mo_coeff_b)
464 IF (.NOT.
ASSOCIATED(mo_coeff_aux_fit))
THEN
465 CALL init_mo_set(mos_aux_fit(ispin), fm_struct=aux_fit_fm_struct, &
466 name=
"mo_aux_fit"//trim(adjustl(cp_to_string(ispin))))
468 CALL cp_fm_struct_release(aux_fit_fm_struct)
470 IF (.NOT.
ASSOCIATED(mo_coeff_b))
THEN
471 CALL cp_fm_get_info(mos_aux_fit(ispin)%mo_coeff, ncol_global=nmo)
472 CALL dbcsr_init_p(mos_aux_fit(ispin)%mo_coeff_b)
473 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
474 CALL cp_dbcsr_m_by_n_from_row_template(mos_aux_fit(ispin)%mo_coeff_b, &
475 template=matrix_s_aux_fit_kp(1, 1)%matrix, &
476 n=nmo, sym=dbcsr_type_no_symmetry)
480 CALL timestop(handle)
488 SUBROUTINE init_admm_gapw(qs_env)
490 TYPE(qs_environment_type),
POINTER :: qs_env
492 INTEGER :: ikind, nkind
493 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
494 TYPE(admm_type),
POINTER :: admm_env
495 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
496 TYPE(dft_control_type),
POINTER :: dft_control
497 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis, aux_fit_soft_basis, &
498 orb_basis, soft_basis
499 TYPE(mp_para_env_type),
POINTER :: para_env
500 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
501 TYPE(section_vals_type),
POINTER :: input
503 NULLIFY (admm_kind_set, aux_fit_basis, atomic_kind_set, aux_fit_soft_basis, &
504 dft_control, input, orb_basis, para_env, qs_kind_set, soft_basis)
506 CALL get_qs_env(qs_env, admm_env=admm_env, &
507 atomic_kind_set=atomic_kind_set, &
508 dft_control=dft_control, &
511 qs_kind_set=qs_kind_set)
513 admm_env%do_gapw = .true.
514 ALLOCATE (admm_env%admm_gapw_env)
515 admm_gapw_env => admm_env%admm_gapw_env
516 NULLIFY (admm_gapw_env%local_rho_set)
517 NULLIFY (admm_gapw_env%admm_kind_set)
518 NULLIFY (admm_gapw_env%task_list)
521 nkind =
SIZE(qs_kind_set)
522 ALLOCATE (admm_gapw_env%admm_kind_set(nkind))
523 admm_kind_set => admm_gapw_env%admm_kind_set
528 admm_kind_set(ikind)%name = qs_kind_set(ikind)%name
529 admm_kind_set(ikind)%element_symbol = qs_kind_set(ikind)%element_symbol
530 admm_kind_set(ikind)%natom = qs_kind_set(ikind)%natom
531 admm_kind_set(ikind)%hard_radius = qs_kind_set(ikind)%hard_radius
532 admm_kind_set(ikind)%max_rad_local = qs_kind_set(ikind)%max_rad_local
533 admm_kind_set(ikind)%gpw_type_forced = qs_kind_set(ikind)%gpw_type_forced
534 admm_kind_set(ikind)%ngrid_rad = qs_kind_set(ikind)%ngrid_rad
535 admm_kind_set(ikind)%ngrid_ang = qs_kind_set(ikind)%ngrid_ang
538 IF (
ASSOCIATED(qs_kind_set(ikind)%all_potential))
THEN
539 CALL copy_potential(qs_kind_set(ikind)%all_potential, admm_kind_set(ikind)%all_potential)
541 IF (
ASSOCIATED(qs_kind_set(ikind)%gth_potential))
THEN
542 CALL copy_potential(qs_kind_set(ikind)%gth_potential, admm_kind_set(ikind)%gth_potential)
544 IF (
ASSOCIATED(qs_kind_set(ikind)%sgp_potential))
THEN
545 CALL copy_potential(qs_kind_set(ikind)%sgp_potential, admm_kind_set(ikind)%sgp_potential)
549 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
550 CALL copy_gto_basis_set(aux_fit_basis, orb_basis)
551 CALL add_basis_set_to_container(admm_kind_set(ikind)%basis_sets, orb_basis,
"ORB")
555 CALL init_gapw_basis_set(admm_kind_set, dft_control%qs_control, input, &
556 modify_qs_control=.false.)
559 CALL init_interaction_radii(dft_control%qs_control, admm_kind_set)
562 CALL local_rho_set_create(admm_gapw_env%local_rho_set)
563 CALL init_rho_atom(admm_gapw_env%local_rho_set%rho_atom_set, &
564 atomic_kind_set, admm_kind_set, dft_control, para_env)
567 CALL init_gapw_nlcc(admm_kind_set)
571 NULLIFY (aux_fit_soft_basis)
572 CALL get_qs_kind(admm_kind_set(ikind), basis_set=soft_basis, basis_type=
"ORB_SOFT")
573 CALL copy_gto_basis_set(soft_basis, aux_fit_soft_basis)
574 CALL add_basis_set_to_container(qs_kind_set(ikind)%basis_sets, aux_fit_soft_basis,
"AUX_FIT_SOFT")
577 END SUBROUTINE init_admm_gapw
585 SUBROUTINE admm_init_hamiltonians(admm_env, qs_env, aux_basis_type)
587 TYPE(admm_type),
POINTER :: admm_env
588 TYPE(qs_environment_type),
POINTER :: qs_env
589 CHARACTER(len=*) :: aux_basis_type
591 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_init_hamiltonians'
593 INTEGER :: handle, hfx_pot, ikind, nkind
594 LOGICAL :: do_kpoints, mic, molecule_only
595 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_fit_present, orb_present
596 REAL(dp) :: eps_schwarz, omega, pdist, roperator, &
598 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_fit_radius, orb_radius
599 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
600 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
601 TYPE(cell_type),
POINTER :: cell
602 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_aux_fit_kp, &
603 matrix_s_aux_fit_vs_orb_kp
604 TYPE(dft_control_type),
POINTER :: dft_control
605 TYPE(distribution_1d_type),
POINTER :: distribution_1d
606 TYPE(distribution_2d_type),
POINTER :: distribution_2d
607 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis_set, orb_basis_set
608 TYPE(kpoint_type),
POINTER :: kpoints
609 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
610 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
611 TYPE(mp_para_env_type),
POINTER :: para_env
612 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
613 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
614 TYPE(qs_ks_env_type),
POINTER :: ks_env
615 TYPE(section_vals_type),
POINTER :: hfx_sections, neighbor_list_section
617 NULLIFY (particle_set, cell, kpoints, distribution_1d, distribution_2d, molecule_set, &
618 atomic_kind_set, dft_control, neighbor_list_section, aux_fit_basis_set, orb_basis_set, &
619 ks_env, para_env, qs_kind_set, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb_kp)
621 CALL timeset(routinen, handle)
623 CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, cell=cell, kpoints=kpoints, &
624 local_particles=distribution_1d, distribution_2d=distribution_2d, &
625 molecule_set=molecule_set, atomic_kind_set=atomic_kind_set, do_kpoints=do_kpoints, &
626 dft_control=dft_control, para_env=para_env, qs_kind_set=qs_kind_set)
627 ALLOCATE (orb_present(nkind), aux_fit_present(nkind))
628 ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), pair_radius(nkind, nkind))
629 aux_fit_radius(:) = 0.0_dp
631 molecule_only = .false.
632 IF (dft_control%qs_control%do_kg) molecule_only = .true.
634 IF (kpoints%nkp > 0)
THEN
636 ELSEIF (dft_control%qs_control%semi_empirical)
THEN
640 pdist = dft_control%qs_control%pairlist_radius
642 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
643 neighbor_list_section => section_vals_get_subs_vals(qs_env%input,
"DFT%PRINT%NEIGHBOR_LISTS")
645 ALLOCATE (atom2d(nkind))
646 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
647 molecule_set, molecule_only, particle_set=particle_set)
650 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type=
"ORB")
651 IF (
ASSOCIATED(orb_basis_set))
THEN
652 orb_present(ikind) = .true.
653 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
655 orb_present(ikind) = .false.
658 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type=aux_basis_type)
659 IF (
ASSOCIATED(aux_fit_basis_set))
THEN
660 aux_fit_present(ikind) = .true.
661 CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
663 aux_fit_present(ikind) = .false.
667 IF (pdist < 0.0_dp)
THEN
668 pdist = max(plane_distance(1, 0, 0, cell), &
669 plane_distance(0, 1, 0, cell), &
670 plane_distance(0, 0, 1, cell))
677 hfx_sections => section_vals_get_subs_vals(qs_env%input,
"DFT%XC%HF")
678 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
680 SELECT CASE (hfx_pot)
681 CASE (do_potential_id)
683 CASE (do_potential_truncated)
684 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
685 CASE (do_potential_mix_cl_trunc)
686 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
687 CASE (do_potential_short)
688 CALL section_vals_val_get(hfx_sections,
"INTERACTION_POTENTIAL%OMEGA", r_val=omega)
689 CALL section_vals_val_get(hfx_sections,
"SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
690 CALL erfc_cutoff(eps_schwarz, omega, roperator)
692 cpabort(
"HFX potential not available for K-points (NYI)")
696 CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, pair_radius, pdist)
697 pair_radius = pair_radius + cutoff_screen_factor*roperator
698 CALL build_neighbor_lists(admm_env%sab_aux_fit, particle_set, atom2d, cell, pair_radius, &
699 mic=mic, molecular=molecule_only, subcells=subcells, nlname=
"sab_aux_fit")
700 CALL build_neighbor_lists(admm_env%sab_aux_fit_asymm, particle_set, atom2d, cell, pair_radius, &
701 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
702 nlname=
"sab_aux_fit_asymm")
703 CALL pair_radius_setup(aux_fit_present, orb_present, aux_fit_radius, orb_radius, pair_radius)
704 CALL build_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, atom2d, cell, pair_radius, &
705 mic=mic, symmetric=.false., molecular=molecule_only, subcells=subcells, &
706 nlname=
"sab_aux_fit_vs_orb")
708 CALL write_neighbor_lists(admm_env%sab_aux_fit, particle_set, cell, para_env, neighbor_list_section, &
709 "/SAB_AUX_FIT",
"sab_aux_fit",
"AUX_FIT_ORBITAL AUX_FIT_ORBITAL")
710 CALL write_neighbor_lists(admm_env%sab_aux_fit_vs_orb, particle_set, cell, para_env, neighbor_list_section, &
711 "/SAB_AUX_FIT_VS_ORB",
"sab_aux_fit_vs_orb",
"ORBITAL AUX_FIT_ORBITAL")
713 CALL atom2d_cleanup(atom2d)
716 CALL get_qs_env(qs_env, ks_env=ks_env)
718 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit)
719 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_kp, &
720 matrix_name=
"AUX_FIT_OVERLAP", &
721 basis_type_a=aux_basis_type, &
722 basis_type_b=aux_basis_type, &
723 sab_nl=admm_env%sab_aux_fit)
724 CALL set_2d_pointer(admm_env%matrix_s_aux_fit, matrix_s_aux_fit_kp)
725 CALL kpoint_transitional_release(admm_env%matrix_s_aux_fit_vs_orb)
726 CALL build_overlap_matrix(ks_env, matrixkp_s=matrix_s_aux_fit_vs_orb_kp, &
727 matrix_name=
"MIXED_OVERLAP", &
728 basis_type_a=aux_basis_type, &
729 basis_type_b=
"ORB", &
730 sab_nl=admm_env%sab_aux_fit_vs_orb)
731 CALL set_2d_pointer(admm_env%matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp)
733 CALL timestop(handle)
735 END SUBROUTINE admm_init_hamiltonians
743 SUBROUTINE admm_update_s_mstruct(admm_env, qs_env, aux_basis_type)
745 TYPE(admm_type),
POINTER :: admm_env
746 TYPE(qs_environment_type),
POINTER :: qs_env
747 CHARACTER(len=*) :: aux_basis_type
749 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_update_s_mstruct'
752 LOGICAL :: skip_load_balance_distributed
753 TYPE(dft_control_type),
POINTER :: dft_control
754 TYPE(qs_ks_env_type),
POINTER :: ks_env
756 NULLIFY (ks_env, dft_control)
758 CALL timeset(routinen, handle)
760 CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control)
763 skip_load_balance_distributed = dft_control%qs_control%skip_load_balance_distributed
764 IF (
ASSOCIATED(admm_env%task_list_aux_fit))
CALL deallocate_task_list(admm_env%task_list_aux_fit)
765 CALL allocate_task_list(admm_env%task_list_aux_fit)
766 CALL generate_qs_task_list(ks_env, admm_env%task_list_aux_fit, basis_type=aux_basis_type, &
767 reorder_rs_grid_ranks=.false., &
768 skip_load_balance_distributed=skip_load_balance_distributed, &
769 sab_orb_external=admm_env%sab_aux_fit)
772 CALL qs_rho_rebuild(admm_env%rho_aux_fit, qs_env=qs_env, admm=.true.)
773 CALL qs_rho_rebuild(admm_env%rho_aux_fit_buffer, qs_env=qs_env, admm=.true.)
775 CALL timestop(handle)
777 END SUBROUTINE admm_update_s_mstruct
783 SUBROUTINE update_admm_gapw(qs_env)
785 TYPE(qs_environment_type),
POINTER :: qs_env
787 CHARACTER(len=*),
PARAMETER :: routinen =
'update_admm_gapw'
789 INTEGER :: handle, ikind, nkind
791 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: aux_present, oce_present
793 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: aux_radius, oce_radius
794 REAL(dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
795 TYPE(admm_gapw_r3d_rs_type),
POINTER :: admm_gapw_env
796 TYPE(admm_type),
POINTER :: admm_env
797 TYPE(atomic_kind_type),
DIMENSION(:),
POINTER :: atomic_kind_set
798 TYPE(cell_type),
POINTER :: cell
799 TYPE(dft_control_type),
POINTER :: dft_control
800 TYPE(distribution_1d_type),
POINTER :: distribution_1d
801 TYPE(distribution_2d_type),
POINTER :: distribution_2d
802 TYPE(gto_basis_set_type),
POINTER :: aux_fit_basis
803 TYPE(local_atoms_type),
ALLOCATABLE,
DIMENSION(:) :: atom2d
804 TYPE(molecule_type),
DIMENSION(:),
POINTER :: molecule_set
805 TYPE(neighbor_list_set_p_type),
DIMENSION(:), &
807 TYPE(particle_type),
DIMENSION(:),
POINTER :: particle_set
808 TYPE(paw_proj_set_type),
POINTER :: paw_proj
809 TYPE(qs_kind_type),
DIMENSION(:),
POINTER :: admm_kind_set, qs_kind_set
810 TYPE(qs_ks_env_type),
POINTER :: ks_env
812 NULLIFY (ks_env, qs_kind_set, admm_kind_set, aux_fit_basis, cell, distribution_1d)
813 NULLIFY (distribution_2d, paw_proj, particle_set, molecule_set, admm_env, admm_gapw_env)
814 NULLIFY (dft_control, atomic_kind_set, sap_oce)
816 CALL timeset(routinen, handle)
818 CALL get_qs_env(qs_env, ks_env=ks_env, qs_kind_set=qs_kind_set, admm_env=admm_env, &
819 dft_control=dft_control)
820 admm_gapw_env => admm_env%admm_gapw_env
821 admm_kind_set => admm_gapw_env%admm_kind_set
822 nkind =
SIZE(qs_kind_set)
825 IF (
ASSOCIATED(admm_gapw_env%task_list))
CALL deallocate_task_list(admm_gapw_env%task_list)
826 CALL allocate_task_list(admm_gapw_env%task_list)
829 CALL generate_qs_task_list(ks_env, admm_gapw_env%task_list, basis_type=
"AUX_FIT_SOFT", &
830 reorder_rs_grid_ranks=.false., &
831 skip_load_balance_distributed=dft_control%qs_control%skip_load_balance_distributed, &
832 sab_orb_external=admm_env%sab_aux_fit)
836 ALLOCATE (aux_present(nkind), oce_present(nkind))
837 aux_present = .false.; oce_present = .false.
838 ALLOCATE (aux_radius(nkind), oce_radius(nkind))
839 aux_radius = 0.0_dp; oce_radius = 0.0_dp
842 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis, basis_type=
"AUX_FIT")
843 IF (
ASSOCIATED(aux_fit_basis))
THEN
844 aux_present(ikind) = .true.
845 CALL get_gto_basis_set(aux_fit_basis, kind_radius=aux_radius(ikind))
849 CALL get_qs_kind(admm_kind_set(ikind), paw_atom=paw_atom, paw_proj_set=paw_proj)
851 oce_present(ikind) = .true.
852 CALL get_paw_proj_set(paw_proj, rcprj=oce_radius(ikind))
856 ALLOCATE (pair_radius(nkind, nkind))
858 CALL pair_radius_setup(aux_present, oce_present, aux_radius, oce_radius, pair_radius)
860 CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, cell=cell, &
861 distribution_2d=distribution_2d, local_particles=distribution_1d, &
862 particle_set=particle_set, molecule_set=molecule_set)
863 CALL section_vals_val_get(qs_env%input,
"DFT%SUBCELLS", r_val=subcells)
865 ALLOCATE (atom2d(nkind))
866 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
867 molecule_set, .false., particle_set)
868 CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
869 subcells=subcells, operator_type=
"ABBA", nlname=
"AUX_PAW-PRJ")
870 CALL atom2d_cleanup(atom2d)
873 CALL create_oce_set(admm_gapw_env%oce)
874 CALL allocate_oce_set(admm_gapw_env%oce, nkind)
877 CALL build_oce_matrices(admm_gapw_env%oce%intac, calculate_forces=.true., nder=1, &
878 qs_kind_set=admm_kind_set, particle_set=particle_set, &
879 sap_oce=sap_oce, eps_fit=dft_control%qs_control%gapw_control%eps_fit)
881 CALL release_neighbor_list_sets(sap_oce)
883 CALL timestop(handle)
885 END SUBROUTINE update_admm_gapw
892 SUBROUTINE admm_alloc_ks_matrices(admm_env, qs_env)
894 TYPE(admm_type),
POINTER :: admm_env
895 TYPE(qs_environment_type),
POINTER :: qs_env
897 CHARACTER(len=*),
PARAMETER :: routinen =
'admm_alloc_ks_matrices'
899 INTEGER :: handle, ic, ispin
900 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_aux_fit_dft_kp, &
901 matrix_ks_aux_fit_hfx_kp, &
902 matrix_ks_aux_fit_kp, &
904 TYPE(dft_control_type),
POINTER :: dft_control
906 NULLIFY (dft_control, matrix_s_aux_fit_kp, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp)
908 CALL timeset(routinen, handle)
910 CALL get_qs_env(qs_env, dft_control=dft_control)
911 CALL get_admm_env(admm_env, matrix_s_aux_fit_kp=matrix_s_aux_fit_kp)
913 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit)
914 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_dft)
915 CALL kpoint_transitional_release(admm_env%matrix_ks_aux_fit_hfx)
917 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_kp, dft_control%nspins, dft_control%nimages)
918 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_dft_kp, dft_control%nspins, dft_control%nimages)
919 CALL dbcsr_allocate_matrix_set(matrix_ks_aux_fit_hfx_kp, dft_control%nspins, dft_control%nimages)
921 DO ispin = 1, dft_control%nspins
922 DO ic = 1, dft_control%nimages
923 ALLOCATE (matrix_ks_aux_fit_kp(ispin, ic)%matrix)
924 CALL dbcsr_create(matrix_ks_aux_fit_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, ic)%matrix, &
925 name=
"KOHN-SHAM_MATRIX for ADMM")
926 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
927 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, ic)%matrix, 0.0_dp)
929 ALLOCATE (matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix)
930 CALL dbcsr_create(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
931 name=
"KOHN-SHAM_MATRIX for ADMM")
932 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
933 CALL dbcsr_set(matrix_ks_aux_fit_dft_kp(ispin, ic)%matrix, 0.0_dp)
935 ALLOCATE (matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix)
936 CALL dbcsr_create(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, template=matrix_s_aux_fit_kp(1, 1)%matrix, &
937 name=
"KOHN-SHAM_MATRIX for ADMM")
938 CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, admm_env%sab_aux_fit)
939 CALL dbcsr_set(matrix_ks_aux_fit_hfx_kp(ispin, ic)%matrix, 0.0_dp)
943 CALL set_admm_env(admm_env, &
944 matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
945 matrix_ks_aux_fit_dft_kp=matrix_ks_aux_fit_dft_kp, &
946 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
948 CALL timestop(handle)
950 END SUBROUTINE admm_alloc_ks_matrices
960 TYPE(qs_environment_type),
POINTER :: qs_env
961 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
962 TYPE(qs_energy_type),
POINTER :: energy
963 LOGICAL,
INTENT(in) :: calculate_forces
965 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix_kp'
967 INTEGER :: handle, img, irep, ispin, n_rep_hf, &
969 LOGICAL :: do_adiabatic_rescaling, &
970 s_mstruct_changed, use_virial
971 REAL(dp) :: eh1, ehfx, eold
972 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
973 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_aux_fit_im, matrix_ks_im
974 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_ks_aux_fit_hfx_kp, &
975 matrix_ks_aux_fit_kp, matrix_ks_orb, &
977 TYPE(dft_control_type),
POINTER :: dft_control
978 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
979 TYPE(mp_para_env_type),
POINTER :: para_env
980 TYPE(pw_env_type),
POINTER :: pw_env
981 TYPE(pw_poisson_type),
POINTER :: poisson_env
982 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
983 TYPE(qs_rho_type),
POINTER :: rho_orb
984 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
986 TYPE(virial_type),
POINTER :: virial
988 CALL timeset(routinen, handle)
990 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
991 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
992 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_ks_aux_fit_kp, &
993 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx_kp)
995 CALL get_qs_env(qs_env=qs_env, &
996 dft_control=dft_control, &
998 matrix_h_kp=matrix_h, &
1002 matrix_ks_im=matrix_ks_im, &
1003 s_mstruct_changed=s_mstruct_changed, &
1007 IF (qs_env%run_rtp) cpabort(
"No RTP implementation with K-points HFX")
1010 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1011 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1012 IF (do_adiabatic_rescaling) cpabort(
"No adiabatic rescaling implementation with K-points HFX")
1014 IF (dft_control%do_admm)
THEN
1015 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_aux_fit_kp, &
1016 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, &
1017 matrix_ks_aux_fit_hfx_kp=matrix_ks_aux_fit_hfx_kp)
1020 nspins = dft_control%nspins
1021 nimages = dft_control%nimages
1023 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1024 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1026 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1027 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1030 IF (dft_control%do_admm)
THEN
1031 DO ispin = 1, nspins
1033 CALL dbcsr_set(matrix_ks_aux_fit_kp(ispin, img)%matrix, 0.0_dp)
1037 DO ispin = 1, nspins
1039 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1043 ALLOCATE (hf_energy(n_rep_hf))
1047 DO irep = 1, n_rep_hf
1050 IF (dft_control%do_admm)
THEN
1051 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit_kp=matrix_ks_orb, rho_aux_fit=rho_orb)
1053 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1055 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1060 IF (.NOT. x_data(irep, 1)%do_hfx_ri)
THEN
1061 cpabort(
"Only RI-HFX is implemented for K-points")
1064 CALL hfx_ri_update_ks_kp(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1065 rho_ao_orb, s_mstruct_changed, nspins, &
1066 x_data(irep, 1)%general_parameter%fraction)
1068 IF (calculate_forces)
THEN
1070 IF (dft_control%do_admm)
THEN
1071 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1074 CALL hfx_ri_update_forces_kp(qs_env, x_data(irep, 1)%ri_data, nspins, &
1075 x_data(irep, 1)%general_parameter%fraction, &
1076 rho_ao_orb, use_virial=use_virial)
1078 IF (dft_control%do_admm)
THEN
1079 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1083 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
1085 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1094 DO ispin = 1, nspins
1096 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1100 IF (use_virial .AND. calculate_forces)
THEN
1101 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1102 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1103 virial%pv_calculate = .false.
1107 IF (dft_control%do_admm)
THEN
1108 DO ispin = 1, nspins
1110 CALL dbcsr_add(matrix_ks_aux_fit_hfx_kp(ispin, img)%matrix, matrix_ks_aux_fit_kp(ispin, img)%matrix, &
1116 CALL timestop(handle)
1136 just_energy, v_rspace_new, v_tau_rspace)
1138 TYPE(qs_environment_type),
POINTER :: qs_env
1139 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks
1140 TYPE(qs_rho_type),
POINTER :: rho
1141 TYPE(qs_energy_type),
POINTER :: energy
1142 LOGICAL,
INTENT(in) :: calculate_forces, just_energy
1143 TYPE(pw_r3d_rs_type),
DIMENSION(:),
POINTER :: v_rspace_new, v_tau_rspace
1145 CHARACTER(LEN=*),
PARAMETER :: routinen =
'hfx_ks_matrix'
1147 INTEGER :: handle, img, irep, ispin, mspin, &
1148 n_rep_hf, nimages, ns, nspins
1149 LOGICAL :: distribute_fock_matrix, &
1150 do_adiabatic_rescaling, &
1151 hfx_treat_lsd_in_core, &
1152 s_mstruct_changed, use_virial
1153 REAL(dp) :: eh1, ehfx, ehfxrt, eold
1154 REAL(dp),
ALLOCATABLE,
DIMENSION(:) :: hf_energy
1155 TYPE(dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_ks_1d, matrix_ks_aux_fit, &
1156 matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_im, matrix_ks_im, rho_ao_1d, rho_ao_resp
1157 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_h, matrix_h_im, matrix_ks_orb, &
1159 TYPE(dft_control_type),
POINTER :: dft_control
1160 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1161 TYPE(mo_set_type),
DIMENSION(:),
POINTER :: mo_array
1162 TYPE(mp_para_env_type),
POINTER :: para_env
1163 TYPE(pw_env_type),
POINTER :: pw_env
1164 TYPE(pw_poisson_type),
POINTER :: poisson_env
1165 TYPE(pw_pool_type),
POINTER :: auxbas_pw_pool
1166 TYPE(qs_rho_type),
POINTER :: rho_orb
1167 TYPE(rt_prop_type),
POINTER :: rtp
1168 TYPE(section_vals_type),
POINTER :: adiabatic_rescaling_section, &
1170 TYPE(virial_type),
POINTER :: virial
1172 CALL timeset(routinen, handle)
1174 NULLIFY (auxbas_pw_pool, dft_control, hfx_sections, input, &
1175 para_env, poisson_env, pw_env, virial, matrix_ks_im, &
1176 matrix_ks_orb, rho_ao_orb, matrix_h, matrix_h_im, matrix_ks_aux_fit, &
1177 matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx)
1179 CALL get_qs_env(qs_env=qs_env, &
1180 dft_control=dft_control, &
1182 matrix_h_kp=matrix_h, &
1183 matrix_h_im_kp=matrix_h_im, &
1184 para_env=para_env, &
1187 matrix_ks_im=matrix_ks_im, &
1188 s_mstruct_changed=s_mstruct_changed, &
1191 IF (dft_control%do_admm)
THEN
1192 CALL get_admm_env(qs_env%admm_env, mos_aux_fit=mo_array, matrix_ks_aux_fit=matrix_ks_aux_fit, &
1193 matrix_ks_aux_fit_im=matrix_ks_aux_fit_im, matrix_ks_aux_fit_hfx=matrix_ks_aux_fit_hfx)
1195 CALL get_qs_env(qs_env=qs_env, mos=mo_array)
1198 nspins = dft_control%nspins
1199 nimages = dft_control%nimages
1201 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
1203 IF (use_virial .AND. calculate_forces) virial%pv_fock_4c = 0.0_dp
1205 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
1206 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1207 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
1209 adiabatic_rescaling_section => section_vals_get_subs_vals(input,
"DFT%XC%ADIABATIC_RESCALING")
1210 CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
1213 IF (dft_control%do_admm)
THEN
1214 DO ispin = 1, nspins
1215 CALL dbcsr_set(matrix_ks_aux_fit(ispin)%matrix, 0.0_dp)
1218 DO ispin = 1, nspins
1220 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
1224 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
1226 ALLOCATE (hf_energy(n_rep_hf))
1230 DO irep = 1, n_rep_hf
1234 IF (do_adiabatic_rescaling .AND. hfx_treat_lsd_in_core) &
1235 cpabort(
"HFX_TREAT_LSD_IN_CORE not implemented for adiabatically rescaled hybrids")
1237 distribute_fock_matrix = .NOT. do_adiabatic_rescaling
1240 IF (hfx_treat_lsd_in_core) mspin = nspins
1243 IF (dft_control%do_admm)
THEN
1244 CALL get_admm_env(qs_env%admm_env, matrix_ks_aux_fit=matrix_ks_1d, rho_aux_fit=rho_orb)
1245 ns =
SIZE(matrix_ks_1d)
1246 matrix_ks_orb(1:ns, 1:1) => matrix_ks_1d(1:ns)
1248 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_orb, rho=rho_orb)
1250 CALL qs_rho_get(rho_struct=rho_orb, rho_ao_kp=rho_ao_orb)
1254 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1256 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1257 mo_array, rho_ao_orb, &
1258 s_mstruct_changed, nspins, &
1259 x_data(irep, 1)%general_parameter%fraction)
1260 IF (dft_control%do_admm)
THEN
1262 DO ispin = 1, nspins
1263 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1264 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1271 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1272 para_env, s_mstruct_changed, irep, distribute_fock_matrix, &
1278 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1280 IF (dft_control%do_admm)
THEN
1281 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.false.)
1283 NULLIFY (rho_ao_resp)
1285 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1287 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1288 x_data(irep, 1)%general_parameter%fraction, &
1289 rho_ao=rho_ao_orb, mos=mo_array, &
1290 rho_ao_resp=rho_ao_resp, &
1291 use_virial=use_virial)
1295 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1296 para_env, irep, use_virial)
1301 IF (dft_control%do_admm)
THEN
1302 CALL scale_dm(qs_env, rho_ao_orb, scale_back=.true.)
1307 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx
1311 IF (qs_env%run_rtp)
THEN
1313 CALL get_qs_env(qs_env=qs_env, rtp=rtp)
1314 DO ispin = 1, nspins
1315 CALL dbcsr_set(matrix_ks_im(ispin)%matrix, 0.0_dp)
1317 IF (dft_control%do_admm)
THEN
1319 ns =
SIZE(matrix_ks_aux_fit_im)
1320 matrix_ks_orb(1:ns, 1:1) => matrix_ks_aux_fit_im(1:ns)
1321 DO ispin = 1, nspins
1322 CALL dbcsr_set(matrix_ks_aux_fit_im(ispin)%matrix, 0.0_dp)
1326 ns =
SIZE(matrix_ks_im)
1327 matrix_ks_orb(1:ns, 1:1) => matrix_ks_im(1:ns)
1330 CALL qs_rho_get(rho_orb, rho_ao_im=rho_ao_1d)
1331 ns =
SIZE(rho_ao_1d)
1332 rho_ao_orb(1:ns, 1:1) => rho_ao_1d(1:ns)
1336 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1337 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_orb, ehfx, &
1338 mo_array, rho_ao_orb, &
1340 x_data(irep, 1)%general_parameter%fraction)
1341 IF (dft_control%do_admm)
THEN
1343 DO ispin = 1, nspins
1344 CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_orb(ispin, 1)%matrix, &
1345 name=
"HF exch. part of matrix_ks_aux_fit for ADMMS")
1351 CALL integrate_four_center(qs_env, x_data, matrix_ks_orb, eh1, rho_ao_orb, hfx_sections, &
1352 para_env, .false., irep, distribute_fock_matrix, &
1354 ehfxrt = ehfxrt + eh1
1358 IF (calculate_forces .AND. .NOT. do_adiabatic_rescaling)
THEN
1359 NULLIFY (rho_ao_resp)
1361 IF (x_data(irep, 1)%do_hfx_ri)
THEN
1363 CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
1364 x_data(irep, 1)%general_parameter%fraction, &
1365 rho_ao=rho_ao_orb, mos=mo_array, &
1366 use_virial=use_virial)
1369 CALL derivatives_four_center(qs_env, rho_ao_orb, rho_ao_resp, hfx_sections, &
1370 para_env, irep, use_virial)
1375 IF (do_adiabatic_rescaling) hf_energy(irep) = ehfx + ehfxrt
1377 IF (dft_control%rtp_control%velocity_gauge)
THEN
1378 cpassert(
ASSOCIATED(matrix_h_im))
1379 DO ispin = 1, nspins
1380 CALL dbcsr_add(matrix_ks_im(ispin)%matrix, matrix_h_im(1, 1)%matrix, &
1387 IF (.NOT. qs_env%run_rtp)
THEN
1388 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1389 poisson_env=poisson_env)
1391 CALL pw_hfx(qs_env, eh1, hfx_sections, poisson_env, auxbas_pw_pool, irep)
1398 energy%ex = ehfx + ehfxrt
1401 DO ispin = 1, nspins
1403 CALL dbcsr_add(matrix_ks(ispin, img)%matrix, matrix_h(1, img)%matrix, &
1407 IF (use_virial .AND. calculate_forces)
THEN
1408 virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
1409 virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
1410 virial%pv_calculate = .false.
1414 IF (do_adiabatic_rescaling)
THEN
1415 CALL rescale_xc_potential(qs_env, matrix_ks, rho, energy, v_rspace_new, v_tau_rspace, &
1416 hf_energy, just_energy, calculate_forces, use_virial)
1420 IF (dft_control%do_admm)
THEN
1421 DO ispin = 1, nspins
1422 CALL dbcsr_add(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_aux_fit(ispin)%matrix, &
1427 CALL timestop(handle)
1461 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
1462 TYPE(section_vals_type),
POINTER :: xc_section
1463 TYPE(admm_type),
POINTER :: admm_env
1465 LOGICAL,
PARAMETER :: debug_functional = .false.
1466#if defined (__LIBXC)
1467 REAL(kind=dp),
PARAMETER :: x_factor_c = 0.930525736349100025_dp
1470 CHARACTER(LEN=20) :: name_x_func
1471 INTEGER :: hfx_potential_type, ifun, iounit, nfun
1472 LOGICAL :: funct_found
1473 REAL(dp) :: cutoff_radius, hfx_fraction, omega, &
1474 scale_coulomb, scale_longrange, scale_x
1475 TYPE(cp_logger_type),
POINTER :: logger
1476 TYPE(section_vals_type),
POINTER :: xc_fun, xc_fun_section
1478 logger => cp_get_default_logger()
1479 NULLIFY (admm_env%xc_section_aux, admm_env%xc_section_primary)
1482 CALL section_vals_duplicate(xc_section, admm_env%xc_section_aux)
1483 CALL section_vals_duplicate(xc_section, admm_env%xc_section_primary)
1486 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
1489 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1490 i_val=xc_funct_no_shortcut)
1497 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1498 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1504 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=1)
1505 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1506 CALL section_vals_remove_values(xc_fun)
1509 IF (
ASSOCIATED(x_data))
THEN
1510 hfx_potential_type = x_data(1, 1)%potential_parameter%potential_type
1511 hfx_fraction = x_data(1, 1)%general_parameter%fraction
1513 cpwarn(
"ADMM requested without a DFT%XC%HF section. It will be ignored for the SCF.")
1514 admm_env%aux_exch_func = do_admm_aux_exch_func_none
1518 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_none)
THEN
1519 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1521 hfx_fraction = 0.0_dp
1522 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default)
THEN
1525 SELECT CASE (hfx_potential_type)
1526 CASE (do_potential_coulomb)
1527 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1529 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1530 r_val=-hfx_fraction)
1531 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1533 CASE (do_potential_short)
1534 omega = x_data(1, 1)%potential_parameter%omega
1535 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1537 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1538 r_val=-hfx_fraction)
1539 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1541 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1543 CASE (do_potential_truncated)
1544 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1545 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1547 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1549 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1550 r_val=cutoff_radius)
1551 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1553 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1555 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1556 r_val=-hfx_fraction)
1557 CASE (do_potential_long)
1558 omega = x_data(1, 1)%potential_parameter%omega
1559 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1561 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1563 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1564 r_val=-hfx_fraction)
1565 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1567 CASE (do_potential_mix_cl)
1568 omega = x_data(1, 1)%potential_parameter%omega
1569 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1570 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1571 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1573 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1574 r_val=hfx_fraction*scale_longrange)
1575 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1576 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1577 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1579 CASE (do_potential_mix_cl_trunc)
1580 omega = x_data(1, 1)%potential_parameter%omega
1581 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1582 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1583 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1584 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1586 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1587 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1588 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1589 r_val=cutoff_radius)
1590 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1592 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1593 r_val=hfx_fraction*scale_longrange)
1594 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1595 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1596 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1599 cpabort(
"Unknown potential operator!")
1603 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1605 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1606 i_val=xc_funct_no_shortcut)
1608 SELECT CASE (hfx_potential_type)
1609 CASE (do_potential_coulomb)
1611 funct_found = .false.
1614 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1615 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1616 IF (xc_fun%section%name ==
"PBE")
THEN
1617 funct_found = .true.
1620 IF (.NOT. funct_found)
THEN
1621 CALL section_vals_val_set(xc_fun_section,
"PBE%_SECTION_PARAMETERS_", &
1623 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1625 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_C", &
1628 CALL section_vals_val_get(xc_fun_section,
"PBE%SCALE_X", &
1630 scale_x = scale_x + hfx_fraction
1631 CALL section_vals_val_set(xc_fun_section,
"PBE%SCALE_X", &
1634 CASE (do_potential_short)
1635 omega = x_data(1, 1)%potential_parameter%omega
1637 funct_found = .false.
1640 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1641 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1642 IF (xc_fun%section%name ==
"XWPBE")
THEN
1643 funct_found = .true.
1646 IF (.NOT. funct_found)
THEN
1647 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1649 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1651 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1653 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1656 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1658 scale_x = scale_x + hfx_fraction
1659 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1662 CASE (do_potential_long)
1663 omega = x_data(1, 1)%potential_parameter%omega
1665 funct_found = .false.
1668 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1669 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1670 IF (xc_fun%section%name ==
"XWPBE")
THEN
1671 funct_found = .true.
1674 IF (.NOT. funct_found)
THEN
1675 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1677 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1678 r_val=-hfx_fraction)
1679 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1681 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1684 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1686 scale_x = scale_x - hfx_fraction
1687 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1689 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1691 scale_x = scale_x + hfx_fraction
1692 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1695 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1698 CASE (do_potential_truncated)
1699 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1701 funct_found = .false.
1704 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1705 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1706 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1707 funct_found = .true.
1710 IF (.NOT. funct_found)
THEN
1711 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1713 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1714 r_val=-hfx_fraction)
1715 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1716 r_val=cutoff_radius)
1718 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1720 scale_x = scale_x - hfx_fraction
1721 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1723 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1724 r_val=cutoff_radius)
1727 funct_found = .false.
1730 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1731 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1732 IF (xc_fun%section%name ==
"XWPBE")
THEN
1733 funct_found = .true.
1736 IF (.NOT. funct_found)
THEN
1737 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1739 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1741 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1745 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1747 scale_x = scale_x + hfx_fraction
1748 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1751 CASE (do_potential_mix_cl_trunc)
1752 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1753 omega = x_data(1, 1)%potential_parameter%omega
1754 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1755 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1757 funct_found = .false.
1760 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1761 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1762 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
1763 funct_found = .true.
1766 IF (.NOT. funct_found)
THEN
1767 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1769 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1770 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
1771 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1772 r_val=cutoff_radius)
1775 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1777 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
1778 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1780 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1781 r_val=cutoff_radius)
1784 funct_found = .false.
1787 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1788 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1789 IF (xc_fun%section%name ==
"XWPBE")
THEN
1790 funct_found = .true.
1793 IF (.NOT. funct_found)
THEN
1794 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1796 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1797 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1798 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1799 r_val=-hfx_fraction*scale_longrange)
1800 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1804 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1806 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1807 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1809 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1811 scale_x = scale_x - hfx_fraction*scale_longrange
1812 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1815 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1818 CASE (do_potential_mix_cl)
1819 omega = x_data(1, 1)%potential_parameter%omega
1820 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1821 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1823 funct_found = .false.
1826 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1827 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1828 IF (xc_fun%section%name ==
"XWPBE")
THEN
1829 funct_found = .true.
1832 IF (.NOT. funct_found)
THEN
1833 CALL section_vals_val_set(xc_fun_section,
"XWPBE%_SECTION_PARAMETERS_", &
1835 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1836 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
1837 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1838 r_val=-hfx_fraction*scale_longrange)
1839 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1843 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X0", &
1845 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
1846 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X0", &
1849 CALL section_vals_val_get(xc_fun_section,
"XWPBE%SCALE_X", &
1851 scale_x = scale_x - hfx_fraction*scale_longrange
1852 CALL section_vals_val_set(xc_fun_section,
"XWPBE%SCALE_X", &
1855 CALL section_vals_val_set(xc_fun_section,
"XWPBE%OMEGA", &
1859 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_default_libxc)
THEN
1862#if defined (__LIBXC)
1863 SELECT CASE (hfx_potential_type)
1864 CASE (do_potential_coulomb)
1865 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1867 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1868 r_val=-hfx_fraction)
1869 CASE (do_potential_short)
1870 omega = x_data(1, 1)%potential_parameter%omega
1871 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1873 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1874 r_val=-hfx_fraction)
1875 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1877 CASE (do_potential_truncated)
1878 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1879 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1881 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1883 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1884 r_val=cutoff_radius)
1885 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1887 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1888 r_val=-hfx_fraction)
1889 CASE (do_potential_long)
1890 omega = x_data(1, 1)%potential_parameter%omega
1891 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1893 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1895 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1897 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1899 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1900 r_val=-hfx_fraction)
1901 CASE (do_potential_mix_cl)
1902 omega = x_data(1, 1)%potential_parameter%omega
1903 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1904 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1905 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1907 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1908 r_val=hfx_fraction*scale_longrange)
1909 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1911 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1913 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1914 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1915 CASE (do_potential_mix_cl_trunc)
1916 omega = x_data(1, 1)%potential_parameter%omega
1917 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
1918 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
1919 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
1920 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
1922 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
1923 r_val=hfx_fraction*(scale_longrange + scale_coulomb))
1924 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
1925 r_val=cutoff_radius)
1926 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1928 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1929 r_val=hfx_fraction*scale_longrange)
1930 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1932 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1934 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1935 r_val=-hfx_fraction*(scale_longrange + scale_coulomb))
1937 cpabort(
"Unknown potential operator!")
1941 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
1943 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
1944 i_val=xc_funct_no_shortcut)
1946 SELECT CASE (hfx_potential_type)
1947 CASE (do_potential_coulomb)
1949 funct_found = .false.
1952 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1953 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1954 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
1955 funct_found = .true.
1958 IF (.NOT. funct_found)
THEN
1959 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
1961 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1964 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
1966 scale_x = scale_x + hfx_fraction
1967 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
1970 CASE (do_potential_short)
1971 omega = x_data(1, 1)%potential_parameter%omega
1973 funct_found = .false.
1976 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
1977 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
1978 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
1979 funct_found = .true.
1982 IF (.NOT. funct_found)
THEN
1983 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
1985 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1987 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
1990 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1992 scale_x = scale_x + hfx_fraction
1993 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
1996 CASE (do_potential_long)
1997 omega = x_data(1, 1)%potential_parameter%omega
1999 funct_found = .false.
2002 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2003 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2004 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2005 funct_found = .true.
2008 IF (.NOT. funct_found)
THEN
2009 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2011 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2012 r_val=-hfx_fraction)
2013 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2016 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2018 scale_x = scale_x - hfx_fraction
2019 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2022 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2026 funct_found = .false.
2029 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2030 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2031 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2032 funct_found = .true.
2035 IF (.NOT. funct_found)
THEN
2036 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2038 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2041 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2043 scale_x = scale_x + hfx_fraction
2044 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2047 CASE (do_potential_truncated)
2048 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2050 funct_found = .false.
2053 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2054 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2055 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2056 funct_found = .true.
2059 IF (.NOT. funct_found)
THEN
2060 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2062 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2063 r_val=-hfx_fraction)
2064 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2065 r_val=cutoff_radius)
2068 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2070 scale_x = scale_x - hfx_fraction
2071 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2073 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2074 r_val=cutoff_radius)
2077 funct_found = .false.
2080 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2081 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2082 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2083 funct_found = .true.
2086 IF (.NOT. funct_found)
THEN
2087 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2089 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2093 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2095 scale_x = scale_x + hfx_fraction
2096 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2099 CASE (do_potential_mix_cl_trunc)
2100 cutoff_radius = x_data(1, 1)%potential_parameter%cutoff_radius
2101 omega = x_data(1, 1)%potential_parameter%omega
2102 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2103 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2105 funct_found = .false.
2108 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2109 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2110 IF (xc_fun%section%name ==
"PBE_HOLE_T_C_LR")
THEN
2111 funct_found = .true.
2114 IF (.NOT. funct_found)
THEN
2115 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%_SECTION_PARAMETERS_", &
2117 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2118 r_val=-hfx_fraction*(scale_coulomb + scale_longrange))
2119 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2120 r_val=cutoff_radius)
2123 CALL section_vals_val_get(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2125 scale_x = scale_x - hfx_fraction*(scale_coulomb + scale_longrange)
2126 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%SCALE_X", &
2128 CALL section_vals_val_set(xc_fun_section,
"PBE_HOLE_T_C_LR%CUTOFF_RADIUS", &
2129 r_val=cutoff_radius)
2132 funct_found = .false.
2135 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2136 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2137 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2138 funct_found = .true.
2141 IF (.NOT. funct_found)
THEN
2142 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2144 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2145 r_val=-hfx_fraction*scale_longrange)
2146 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2150 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2152 scale_x = scale_x - hfx_fraction*scale_longrange
2153 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2156 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2160 funct_found = .false.
2163 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2164 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2165 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2166 funct_found = .true.
2169 IF (.NOT. funct_found)
THEN
2170 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2172 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2173 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2175 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2177 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2178 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2181 CASE (do_potential_mix_cl)
2182 omega = x_data(1, 1)%potential_parameter%omega
2183 scale_coulomb = x_data(1, 1)%potential_parameter%scale_coulomb
2184 scale_longrange = x_data(1, 1)%potential_parameter%scale_longrange
2186 funct_found = .false.
2189 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2190 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2191 IF (xc_fun%section%name ==
"GGA_X_WPBEH")
THEN
2192 funct_found = .true.
2195 IF (.NOT. funct_found)
THEN
2196 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_SECTION_PARAMETERS_", &
2198 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2199 r_val=-hfx_fraction*scale_longrange)
2200 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2204 CALL section_vals_val_get(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2206 scale_x = scale_x - hfx_fraction*scale_longrange
2207 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%SCALE", &
2210 CALL section_vals_val_set(xc_fun_section,
"GGA_X_WPBEH%_OMEGA", &
2214 funct_found = .false.
2217 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2218 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2219 IF (xc_fun%section%name ==
"GGA_X_PBE")
THEN
2220 funct_found = .true.
2223 IF (.NOT. funct_found)
THEN
2224 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%_SECTION_PARAMETERS_", &
2226 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2227 r_val=hfx_fraction*(scale_coulomb + scale_longrange))
2229 CALL section_vals_val_get(xc_fun_section,
"GGA_X_PBE%SCALE", &
2231 scale_x = scale_x + hfx_fraction*(scale_coulomb + scale_longrange)
2232 CALL section_vals_val_set(xc_fun_section,
"GGA_X_PBE%SCALE", &
2237 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2238 "exchange correction functionals, you have to compile and link against LibXC!")
2242 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex .OR. &
2243 admm_env%aux_exch_func == do_admm_aux_exch_func_opt .OR. &
2244 admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2245 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2247 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2248 name_x_func =
'OPTX'
2249 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee)
THEN
2250 name_x_func =
'BECKE88'
2253 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2255 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2256 r_val=-hfx_fraction)
2258 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2259 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", r_val=0.0_dp)
2262 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2263 IF (admm_env%aux_exch_func_param)
THEN
2264 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2265 r_val=admm_env%aux_x_param(1))
2266 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2267 r_val=admm_env%aux_x_param(2))
2268 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2269 r_val=admm_env%aux_x_param(3))
2274 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2277 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2278 i_val=xc_funct_no_shortcut)
2281 funct_found = .false.
2284 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2285 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2286 IF (xc_fun%section%name == trim(name_x_func))
THEN
2287 funct_found = .true.
2290 IF (.NOT. funct_found)
THEN
2291 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2293 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2295 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex)
THEN
2296 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_C", &
2298 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2299 IF (admm_env%aux_exch_func_param)
THEN
2300 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A1", &
2301 r_val=admm_env%aux_x_param(1))
2302 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%A2", &
2303 r_val=admm_env%aux_x_param(2))
2304 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%GAMMA", &
2305 r_val=admm_env%aux_x_param(3))
2310 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2312 scale_x = scale_x + hfx_fraction
2313 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE_X", &
2315 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt)
THEN
2316 cpassert(.NOT. admm_env%aux_exch_func_param)
2320 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc .OR. &
2321 admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc .OR. &
2322 admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc .OR. &
2323 admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2325 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_pbex_libxc)
THEN
2326 name_x_func =
'GGA_X_PBE'
2327 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2328 name_x_func =
'GGA_X_OPTX'
2329 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_bee_libxc)
THEN
2330 name_x_func =
'GGA_X_B88'
2331 ELSE IF (admm_env%aux_exch_func == do_admm_aux_exch_func_sx_libxc)
THEN
2332 name_x_func =
'LDA_X'
2335 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2337 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2338 r_val=-hfx_fraction)
2340 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2341 IF (admm_env%aux_exch_func_param)
THEN
2342 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2343 r_val=admm_env%aux_x_param(1))
2345 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2346 r_val=admm_env%aux_x_param(2)/x_factor_c)
2347 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2348 r_val=admm_env%aux_x_param(3))
2353 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2356 CALL section_vals_val_set(xc_fun_section,
"_SECTION_PARAMETERS_", &
2357 i_val=xc_funct_no_shortcut)
2360 funct_found = .false.
2363 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2364 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2365 IF (xc_fun%section%name == trim(name_x_func))
THEN
2366 funct_found = .true.
2369 IF (.NOT. funct_found)
THEN
2370 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_SECTION_PARAMETERS_", &
2372 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2374 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2375 IF (admm_env%aux_exch_func_param)
THEN
2376 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_A", &
2377 r_val=admm_env%aux_x_param(1))
2379 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_B", &
2380 r_val=admm_env%aux_x_param(2)/x_factor_c)
2381 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%_GAMMA", &
2382 r_val=admm_env%aux_x_param(3))
2387 CALL section_vals_val_get(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2389 scale_x = scale_x + hfx_fraction
2390 CALL section_vals_val_set(xc_fun_section, trim(name_x_func)//
"%SCALE", &
2392 IF (admm_env%aux_exch_func == do_admm_aux_exch_func_opt_libxc)
THEN
2393 cpassert(.NOT. admm_env%aux_exch_func_param)
2397 CALL cp_abort(__location__,
"In order use a LibXC-based ADMM "// &
2398 "exchange correction functionals, you have to compile and link against LibXC!")
2402 cpabort(
"Unknown exchange correction functional!")
2405 IF (debug_functional)
THEN
2406 iounit = cp_logger_get_default_io_unit(logger)
2407 IF (iounit > 0)
THEN
2408 WRITE (iounit,
"(A)")
" ADMM Primary Basis Set Functional"
2410 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_primary,
"XC_FUNCTIONAL")
2412 funct_found = .false.
2415 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2416 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2418 scale_x = -1000.0_dp
2419 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2420 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2422 IF (xc_fun%section%name ==
"XWPBE")
THEN
2423 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2424 IF (iounit > 0)
THEN
2425 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2428 IF (iounit > 0)
THEN
2429 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2434 IF (iounit > 0)
THEN
2435 WRITE (iounit,
"(A)")
" Auxiliary Basis Set Functional"
2437 xc_fun_section => section_vals_get_subs_vals(admm_env%xc_section_aux,
"XC_FUNCTIONAL")
2439 funct_found = .false.
2442 xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
2443 IF (.NOT.
ASSOCIATED(xc_fun))
EXIT
2444 scale_x = -1000.0_dp
2445 IF (xc_fun%section%name /=
"LYP" .AND. xc_fun%section%name /=
"VWN")
THEN
2446 CALL section_vals_val_get(xc_fun,
"SCALE_X", r_val=scale_x)
2448 IF (xc_fun%section%name ==
"XWPBE")
THEN
2449 CALL section_vals_val_get(xc_fun,
"SCALE_X0", r_val=hfx_fraction)
2450 IF (iounit > 0)
THEN
2451 WRITE (iounit,
"(T5,A,T25,2F10.3)") trim(xc_fun%section%name), scale_x, hfx_fraction
2454 IF (iounit > 0)
THEN
2455 WRITE (iounit,
"(T5,A,T25,F10.3)") trim(xc_fun%section%name), scale_x
2478 external_hfx_sections, external_x_data, external_para_env)
2479 TYPE(dbcsr_p_type),
DIMENSION(:),
INTENT(INOUT), &
2480 TARGET :: matrix_ks, rho_ao
2481 TYPE(qs_environment_type),
POINTER :: qs_env
2482 LOGICAL,
INTENT(IN),
OPTIONAL :: update_energy, recalc_integrals
2483 TYPE(section_vals_type),
OPTIONAL,
POINTER :: external_hfx_sections
2484 TYPE(hfx_type),
DIMENSION(:, :),
OPTIONAL,
TARGET :: external_x_data
2485 TYPE(mp_para_env_type),
OPTIONAL,
POINTER :: external_para_env
2487 CHARACTER(LEN=*),
PARAMETER :: routinen =
'tddft_hfx_matrix'
2489 INTEGER :: handle, irep, ispin, mspin, n_rep_hf, &
2491 LOGICAL :: distribute_fock_matrix, &
2492 hfx_treat_lsd_in_core, &
2493 my_update_energy, s_mstruct_changed
2494 REAL(kind=dp) :: eh1, ehfx
2495 TYPE(dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_ks_kp, rho_ao_kp
2496 TYPE(dft_control_type),
POINTER :: dft_control
2497 TYPE(hfx_type),
DIMENSION(:, :),
POINTER :: x_data
2498 TYPE(mp_para_env_type),
POINTER :: para_env
2499 TYPE(qs_energy_type),
POINTER :: energy
2500 TYPE(section_vals_type),
POINTER :: hfx_sections, input
2502 CALL timeset(routinen, handle)
2504 NULLIFY (dft_control, hfx_sections, input, para_env, matrix_ks_kp, rho_ao_kp)
2506 CALL get_qs_env(qs_env=qs_env, &
2507 dft_control=dft_control, &
2510 para_env=para_env, &
2511 s_mstruct_changed=s_mstruct_changed, &
2515 hfx_sections => section_vals_get_subs_vals(input,
"DFT%XC%HF")
2517 IF (
PRESENT(external_hfx_sections)) hfx_sections => external_hfx_sections
2518 IF (
PRESENT(external_x_data)) x_data => external_x_data
2519 IF (
PRESENT(external_para_env)) para_env => external_para_env
2521 my_update_energy = .true.
2522 IF (
PRESENT(update_energy)) my_update_energy = update_energy
2524 IF (
PRESENT(recalc_integrals)) s_mstruct_changed = recalc_integrals
2526 cpassert(dft_control%nimages == 1)
2527 nspins = dft_control%nspins
2529 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2530 CALL section_vals_val_get(hfx_sections,
"TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
2533 CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
2534 distribute_fock_matrix = .true.
2537 IF (hfx_treat_lsd_in_core) mspin = nspins
2539 matrix_ks_kp(1:nspins, 1:1) => matrix_ks(1:nspins)
2540 rho_ao_kp(1:nspins, 1:1) => rho_ao(1:nspins)
2542 DO irep = 1, n_rep_hf
2546 IF (x_data(irep, 1)%do_hfx_ri)
THEN
2547 CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_kp, ehfx, &
2548 rho_ao=rho_ao_kp, geometry_did_change=s_mstruct_changed, &
2549 nspins=nspins, hf_fraction=x_data(irep, 1)%general_parameter%fraction)
2553 CALL integrate_four_center(qs_env, x_data, matrix_ks_kp, eh1, rho_ao_kp, hfx_sections, para_env, &
2554 s_mstruct_changed, irep, distribute_fock_matrix, ispin=ispin)
2559 IF (my_update_energy) energy%ex = ehfx
2561 CALL timestop(handle)
Types and set/get functions for auxiliary density matrix methods.
subroutine, public admm_dm_create(admm_dm, admm_control, nspins, natoms)
Create a new admm_dm type.
Contains ADMM methods which require molecular orbitals.
subroutine, public scale_dm(qs_env, rho_ao_orb, scale_back)
Scale density matrix by gsi(ispin), is needed for force scaling in ADMMP.
subroutine, public kpoint_calc_admm_matrices(qs_env, calculate_forces)
Fill the ADMM overlp and basis change matrices in the KP env based on the real-space array.
Types and set/get functions for auxiliary density matrix methods.
subroutine, public get_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Get routine for the ADMM env.
subroutine, public set_admm_env(admm_env, mo_derivs_aux_fit, mos_aux_fit, sab_aux_fit, sab_aux_fit_asymm, sab_aux_fit_vs_orb, matrix_s_aux_fit, matrix_s_aux_fit_kp, matrix_s_aux_fit_vs_orb, matrix_s_aux_fit_vs_orb_kp, task_list_aux_fit, matrix_ks_aux_fit, matrix_ks_aux_fit_kp, matrix_ks_aux_fit_im, matrix_ks_aux_fit_dft, matrix_ks_aux_fit_hfx, matrix_ks_aux_fit_dft_kp, matrix_ks_aux_fit_hfx_kp, rho_aux_fit, rho_aux_fit_buffer, admm_dm)
Set routine for the ADMM env.
subroutine, public admm_env_create(admm_env, admm_control, mos, para_env, natoms, nao_aux_fit, blacs_env_ext)
creates ADMM environment, initializes the basic types
Define the atomic kind types and their sub types.
subroutine, public add_basis_set_to_container(container, basis_set, basis_set_type)
...
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
subroutine, public copy_gto_basis_set(basis_set_in, basis_set_out)
...
Handles all functions related to the CELL.
real(kind=dp) function, public plane_distance(h, k, l, cell)
Calculate the distance between two lattice planes as defined by a triple of Miller indices (hkl).
methods related to the blacs parallel environment
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_init_p(matrix)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_add(matrix_a, matrix_b, alpha_scalar, beta_scalar)
...
Routines that link DBCSR and CP2K concepts together.
subroutine, public cp_dbcsr_alloc_block_from_nbl(matrix, sab_orb, desymmetrize)
allocate the blocks of a dbcsr based on the neighbor list
DBCSR operations in CP2K.
subroutine, public cp_dbcsr_m_by_n_from_row_template(matrix, template, n, sym)
Utility function to create dbcsr matrix, m x n matrix (n arbitrary) with the same processor grid and ...
pool for for elements that are retained and released
represent the structure of a full matrix
subroutine, public cp_fm_struct_create(fmstruct, para_env, context, nrow_global, ncol_global, nrow_block, ncol_block, descriptor, first_p_pos, local_leading_dimension, template_fmstruct, square_blocks, force_block)
allocates and initializes a full matrix structure
subroutine, public cp_fm_struct_release(fmstruct)
releases a full matrix structure
represent a full matrix distributed on many processors
subroutine, public cp_fm_get_info(matrix, name, nrow_global, ncol_global, nrow_block, ncol_block, nrow_local, ncol_local, row_indices, col_indices, local_data, context, nrow_locals, ncol_locals, matrix_struct, para_env)
returns all kind of information about the full matrix
subroutine, public cp_fm_create(matrix, matrix_struct, name, use_sp)
creates a new full matrix with the given structure
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
stores a lists of integer that are local to a processor. The idea is that these integers represent ob...
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
Definition of the atomic potential types.
Utilities for hfx and admm methods.
subroutine, public hfx_ks_matrix(qs_env, matrix_ks, rho, energy, calculate_forces, just_energy, v_rspace_new, v_tau_rspace)
Add the hfx contributions to the Hamiltonian.
subroutine, public tddft_hfx_matrix(matrix_ks, rho_ao, qs_env, update_energy, recalc_integrals, external_hfx_sections, external_x_data, external_para_env)
Add the hfx contributions to the Hamiltonian.
subroutine, public hfx_admm_init(qs_env, calculate_forces)
...
subroutine, public aux_admm_init(qs_env, mos, admm_env, admm_control, basis_type)
Minimal setup routine for admm_env No forces No k-points No DFT correction terms.
subroutine, public create_admm_xc_section(x_data, xc_section, admm_env)
This routine modifies the xc section depending on the potential type used for the HF exchange and the...
subroutine, public hfx_ks_matrix_kp(qs_env, matrix_ks, energy, calculate_forces)
Add the HFX K-point contribution to the real-space Hamiltonians.
Routines to calculate derivatives with respect to basis function origin.
subroutine, public derivatives_four_center(qs_env, rho_ao, rho_ao_resp, hfx_section, para_env, irep, use_virial, adiabatic_rescale_factor, resp_only, external_x_data, nspins)
computes four center derivatives for a full basis set and updates the forcesfock_4c arrays....
Routines to calculate HFX energy and potential.
subroutine, public integrate_four_center(qs_env, x_data, ks_matrix, ehfx, rho_ao, hfx_section, para_env, geometry_did_change, irep, distribute_fock_matrix, ispin, nspins)
computes four center integrals for a full basis set and updates the Kohn-Sham-Matrix and energy....
Test routines for HFX caclulations using PW.
subroutine, public pw_hfx(qs_env, ehfx, hfx_section, poisson_env, auxbas_pw_pool, irep)
computes the Hartree-Fock energy brute force in a pw basis
RI-methods for HFX and K-points. \auhtor Augustin Bussy (01.2023)
subroutine, public hfx_ri_update_forces_kp(qs_env, ri_data, nspins, hf_fraction, rho_ao, use_virial)
Update the K-points RI-HFX forces.
subroutine, public hfx_ri_update_ks_kp(qs_env, ri_data, ks_matrix, ehfx, rho_ao, geometry_did_change, nspins, hf_fraction)
Update the KS matrices for each real-space image.
subroutine, public hfx_ri_update_ks(qs_env, ri_data, ks_matrix, ehfx, mos, rho_ao, geometry_did_change, nspins, hf_fraction)
...
subroutine, public hfx_ri_update_forces(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, mos, use_virial, resp_only, rescale_factor)
the general routine that calls the relevant force code
Types and set/get functions for HFX.
Defines the basic variable types.
integer, parameter, public dp
Routines needed for kpoint calculation.
subroutine, public kpoint_initialize_mos(kpoint, mos, added_mos, for_aux_fit)
Initialize a set of MOs and density matrix for each kpoint (kpoint group)
Datatype to translate between k-points (2d) and gamma-point (1d) code.
subroutine, public kpoint_transitional_release(this)
Release the matrix set, using the right pointer.
subroutine, public set_2d_pointer(this, ptr_2d)
Assigns a 2D pointer.
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
2- and 3-center electron repulsion integral routines based on libint2 Currently available operators: ...
real(kind=dp), parameter, public cutoff_screen_factor
Collection of simple mathematical functions and subroutines.
subroutine, public erfc_cutoff(eps, omg, r_cutoff)
compute a truncation radius for the shortrange operator
Interface to the message passing library MPI.
Define the data structure for the molecule information.
Define the data structure for the particle information.
subroutine, public get_paw_proj_set(paw_proj_set, csprj, chprj, first_prj, first_prjs, last_prj, local_oce_sphi_h, local_oce_sphi_s, maxl, ncgauprj, nsgauprj, nsatbas, nsotot, nprj, o2nindex, n2oindex, rcprj, rzetprj, zisomin, zetprj)
Get informations about a paw projectors set.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
functions related to the poisson solver on regular grids
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, sab_cneo, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, rhoz_cneo_set, ecoul_1c, rho0_s_rs, rho0_s_gs, rhoz_cneo_s_rs, rhoz_cneo_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Get the QUICKSTEP environment.
subroutine, public set_qs_env(qs_env, super_cell, mos, qmmm, qmmm_periodic, ewald_env, ewald_pw, mpools, rho_external, external_vxc, mask, scf_control, rel_control, qs_charges, ks_env, ks_qmmm_env, wf_history, scf_env, active_space, input, oce, rho_atom_set, rho0_atom_set, rho0_mpole, run_rtp, rtp, rhoz_set, rhoz_tot, ecoul_1c, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, efield, rhoz_cneo_set, linres_control, xas_env, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, ls_scf_env, do_transport, transport_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, harris_env, gcp_env, mp2_env, bs_env, kg_env, force, kpoints, wanniercentres, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Set the QUICKSTEP environment.
Calculate the interaction radii for the operator matrix calculation.
subroutine, public init_interaction_radii(qs_control, qs_kind_set)
Initialize all the atomic kind radii for a given threshold value.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, cneo_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public get_qs_kind_set(qs_kind_set, all_potential_present, tnadd_potential_present, gth_potential_present, sgp_potential_present, paw_atom_present, dft_plus_u_atom_present, maxcgf, maxsgf, maxco, maxco_proj, maxgtops, maxlgto, maxlprj, maxnset, maxsgf_set, ncgf, npgf, nset, nsgf, nshell, maxpol, maxlppl, maxlppnl, maxppnl, nelectron, maxder, max_ngrid_rad, max_sph_harm, maxg_iso_not0, lmax_rho0, basis_rcut, basis_type, total_zeff_corr, npgf_seg, cneo_potential_present, nkind_q, natom_q)
Get attributes of an atomic kind set.
subroutine, public init_gapw_nlcc(qs_kind_set)
...
subroutine, public init_gapw_basis_set(qs_kind_set, qs_control, force_env_section, modify_qs_control)
...
subroutine, public local_rho_set_create(local_rho_set)
...
wrapper for the pools of matrixes
subroutine, public mpools_get(mpools, ao_mo_fm_pools, ao_ao_fm_pools, mo_mo_fm_pools, ao_mosub_fm_pools, mosub_mosub_fm_pools, maxao_maxmo_fm_pool, maxao_maxao_fm_pool, maxmo_maxmo_fm_pool)
returns various attributes of the mpools (notably the pools contained in it)
Definition and initialisation of the mo data type.
subroutine, public allocate_mo_set(mo_set, nao, nmo, nelectron, n_el_f, maxocc, flexible_electron_count)
Allocates a mo set and partially initializes it (nao,nmo,nelectron, and flexible_electron_count are v...
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
subroutine, public init_mo_set(mo_set, fm_pool, fm_ref, fm_struct, name)
initializes an allocated mo_set. eigenvalues, mo_coeff, occupation_numbers are valid only after this ...
Define the neighbor list data types and the corresponding functionality.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
Generate the atomic neighbor lists.
subroutine, public atom2d_cleanup(atom2d)
free the internals of atom2d
subroutine, public pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
...
subroutine, public build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, mic, symmetric, molecular, subset_of_mol, current_subset, operator_type, nlname, atomb_to_keep)
Build simple pair neighbor lists.
subroutine, public write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, nl_type, middle_name, nlname)
Write a set of neighbor lists to the output unit.
subroutine, public atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, molecule_set, molecule_only, particle_set)
Build some distribution structure of atoms, refactored from build_qs_neighbor_lists.
Routines for the construction of the coefficients for the expansion of the atomic densities rho1_hard...
subroutine, public build_oce_matrices(intac, calculate_forces, nder, qs_kind_set, particle_set, sap_oce, eps_fit)
Set up the sparse matrix for the coefficients of one center expansions This routine uses the same log...
subroutine, public allocate_oce_set(oce_set, nkind)
Allocate and initialize the matrix set of oce coefficients.
subroutine, public create_oce_set(oce_set)
...
Calculation of overlap matrix, its derivatives and forces.
subroutine, public build_overlap_matrix(ks_env, matrix_s, matrixkp_s, matrix_name, nderivative, basis_type_a, basis_type_b, sab_nl, calculate_forces, matrix_p, matrixkp_p)
Calculation of the overlap matrix over Cartesian Gaussian functions.
subroutine, public init_rho_atom(rho_atom_set, atomic_kind_set, qs_kind_set, dft_control, para_env)
...
methods of the rho structure (defined in qs_rho_types)
subroutine, public qs_rho_rebuild(rho, qs_env, rebuild_ao, rebuild_grids, admm, pw_env_external)
rebuilds rho (if necessary allocating and initializing it)
superstucture that hold various representations of the density and keeps track of which ones are vali...
subroutine, public qs_rho_get(rho_struct, rho_ao, rho_ao_im, rho_ao_kp, rho_ao_im_kp, rho_r, drho_r, rho_g, drho_g, tau_r, tau_g, rho_r_valid, drho_r_valid, rho_g_valid, drho_g_valid, tau_r_valid, tau_g_valid, tot_rho_r, tot_rho_g, rho_r_sccs, soft_valid, complex_rho_ao)
returns info about the density described by this object. If some representation is not available an e...
subroutine, public qs_rho_create(rho)
Allocates a new instance of rho.
Types and set_get for real time propagation depending on runtype and diagonalization method different...
generate the tasks lists used by collocate and integrate routines
subroutine, public generate_qs_task_list(ks_env, task_list, basis_type, reorder_rs_grid_ranks, skip_load_balance_distributed, pw_env_external, sab_orb_external)
...
subroutine, public deallocate_task_list(task_list)
deallocates the components and the object itself
subroutine, public allocate_task_list(task_list)
allocates and initialised the components of the task_list_type
subroutine, public rescale_xc_potential(qs_env, ks_matrix, rho, energy, v_rspace_new, v_tau_rspace, hf_energy, just_energy, calculate_forces, use_virial)
A subtype of the admm_env that contains the extra data needed for an ADMM GAPW calculation.
stores some data used in wavefunction fitting
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
to create arrays of pools
keeps the information about the structure of a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
structure to store local (to a processor) ordered lists of integers.
distributes pairs on a 2d grid of processors
stores some data used in construction of Kohn-Sham matrix
Contains information about kpoints.
stores all the informations relevant to an mpi environment
contained for different pw related things
environment for the poisson solver
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Provides all information about a quickstep kind.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...
keeps the density in various representations, keeping track of which ones are valid.