(git:8ebf9ad)
Loading...
Searching...
No Matches
gw_utils.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2026 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
9!> \brief
10!> \author Jan Wilhelm
11!> \date 07.2023
12! **************************************************************************************************
18 USE bibliography, ONLY: graml2024,&
19 cite_reference
20 USE cell_types, ONLY: cell_type,&
21 pbc,&
26 USE cp_cfm_types, ONLY: cp_cfm_create,&
32 USE cp_dbcsr_api, ONLY: &
34 dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
40 USE cp_files, ONLY: close_file,&
46 USE cp_fm_types, ONLY: cp_fm_create,&
54 USE dbt_api, ONLY: &
55 dbt_clear, dbt_create, dbt_destroy, dbt_filter, dbt_iterator_blocks_left, &
56 dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, &
57 dbt_mp_environ_pgrid, dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
72 USE kinds, ONLY: default_path_length,&
74 dp,&
75 int_8
77 USE kpoint_types, ONLY: get_kpoint_info,&
83 USE machine, ONLY: m_memory,&
85 USE mathconstants, ONLY: gaussi,&
86 z_one,&
87 z_zero
88 USE mathlib, ONLY: diag_complex,&
89 gcd
90 USE message_passing, ONLY: mp_cart_type,&
96 USE mp2_gpw, ONLY: create_mat_munu
104 USE physcon, ONLY: angstrom,&
105 evolt
114 USE qs_kind_types, ONLY: get_qs_kind,&
119 USE qs_tensors, ONLY: build_2c_integrals,&
130 USE rpa_gw, ONLY: continuation_pade
131#include "base/base_uses.f90"
132
133 IMPLICIT NONE
134
135 PRIVATE
136
140
141 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_utils'
142
143CONTAINS
144
145! **************************************************************************************************
146!> \brief ...
147!> \param qs_env ...
148!> \param bs_env ...
149!> \param bs_sec ...
150! **************************************************************************************************
151 SUBROUTINE create_and_init_bs_env_for_gw(qs_env, bs_env, bs_sec)
152 TYPE(qs_environment_type), POINTER :: qs_env
153 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
154 TYPE(section_vals_type), POINTER :: bs_sec
155
156 CHARACTER(LEN=*), PARAMETER :: routinen = 'create_and_init_bs_env_for_gw'
157
158 INTEGER :: handle
159
160 CALL timeset(routinen, handle)
161
162 CALL cite_reference(graml2024)
163
164 CALL read_gw_input_parameters(bs_env, bs_sec)
165
166 CALL print_header_and_input_parameters(bs_env)
167
168 CALL setup_ao_and_ri_basis_set(qs_env, bs_env)
169
170 CALL get_ri_basis_and_basis_function_indices(qs_env, bs_env)
171
172 CALL set_heuristic_parameters(bs_env, qs_env)
173
175
176 CALL setup_kpoints_chi_eps_w(bs_env, bs_env%kpoints_chi_eps_W)
177
178 IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
179 CALL setup_cells_3c(qs_env, bs_env)
180 END IF
181
182 CALL set_parallelization_parameters(qs_env, bs_env)
183
184 CALL allocate_matrices(qs_env, bs_env)
185
186 CALL compute_v_xc(qs_env, bs_env)
187
188 CALL create_tensors(qs_env, bs_env)
189
190 SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
191 CASE (large_cell_gamma)
192
193 CALL allocate_gw_eigenvalues(bs_env)
194
195 CALL check_sparsity_3c(qs_env, bs_env)
196
197 CALL set_sparsity_parallelization_parameters(bs_env)
198
199 CALL check_for_restart_files(qs_env, bs_env)
200
201 CASE (small_cell_full_kp)
202
203 CALL compute_3c_integrals(qs_env, bs_env)
204
205 CALL setup_cells_delta_r(bs_env)
206
207 CALL setup_parallelization_delta_r(bs_env)
208
209 CALL allocate_matrices_small_cell_full_kp(qs_env, bs_env)
210
211 CALL trafo_v_xc_r_to_kp(qs_env, bs_env)
212
213 CALL heuristic_ri_regularization(qs_env, bs_env)
214
215 END SELECT
216
217 CALL setup_time_and_frequency_minimax_grid(bs_env)
218
219 ! free memory in qs_env; only if one is not calculating the LDOS because
220 ! we need real-space grid operations in pw_env, task_list for the LDOS
221 ! Recommendation in case of memory issues: first perform GW calculation without calculating
222 ! LDOS (to safe memor). Then, use GW restart files
223 ! in a subsequent calculation to calculate the LDOS
224 ! Marek : TODO - boolean that does not interfere with RTP init but sets this to correct value
225 IF (.NOT. bs_env%do_ldos .AND. .false.) THEN
226 CALL qs_env_part_release(qs_env)
227 END IF
228
229 CALL timestop(handle)
230
231 END SUBROUTINE create_and_init_bs_env_for_gw
232
233! **************************************************************************************************
234!> \brief ...
235!> \param bs_env ...
236! **************************************************************************************************
237 SUBROUTINE de_init_bs_env(bs_env)
238 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
239
240 CHARACTER(LEN=*), PARAMETER :: routinen = 'de_init_bs_env'
241
242 INTEGER :: handle
243
244 CALL timeset(routinen, handle)
245 ! deallocate quantities here which:
246 ! 1. cannot be deallocated in bs_env_release due to circular dependencies
247 ! 2. consume a lot of memory and should not be kept until the quantity is
248 ! deallocated in bs_env_release
249
250 IF (ASSOCIATED(bs_env%nl_3c%ij_list) .AND. (bs_env%rtp_method == rtp_method_bse)) THEN
251 IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, *) "Retaining nl_3c for RTBSE"
252 ELSE
253 CALL neighbor_list_3c_destroy(bs_env%nl_3c)
254 END IF
255
257
258 CALL timestop(handle)
259
260 END SUBROUTINE de_init_bs_env
261
262! **************************************************************************************************
263!> \brief ...
264!> \param bs_env ...
265!> \param bs_sec ...
266! **************************************************************************************************
267 SUBROUTINE read_gw_input_parameters(bs_env, bs_sec)
268 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
269 TYPE(section_vals_type), POINTER :: bs_sec
270
271 CHARACTER(LEN=*), PARAMETER :: routinen = 'read_gw_input_parameters'
272
273 INTEGER :: handle
274 TYPE(section_vals_type), POINTER :: gw_sec
275
276 CALL timeset(routinen, handle)
277
278 NULLIFY (gw_sec)
279 gw_sec => section_vals_get_subs_vals(bs_sec, "GW")
280
281 CALL section_vals_val_get(gw_sec, "NUM_TIME_FREQ_POINTS", i_val=bs_env%num_time_freq_points)
282 CALL section_vals_val_get(gw_sec, "EPS_FILTER", r_val=bs_env%eps_filter)
283 CALL section_vals_val_get(gw_sec, "REGULARIZATION_RI", r_val=bs_env%input_regularization_RI)
284 CALL section_vals_val_get(gw_sec, "REGULARIZATION_MINIMAX", r_val=bs_env%input_regularization_minimax)
285 CALL section_vals_val_get(gw_sec, "CUTOFF_RADIUS_RI", r_val=bs_env%ri_metric%cutoff_radius)
286 CALL section_vals_val_get(gw_sec, "MEMORY_PER_PROC", r_val=bs_env%input_memory_per_proc_GB)
287 CALL section_vals_val_get(gw_sec, "APPROX_KP_EXTRAPOL", l_val=bs_env%approx_kp_extrapol)
288 CALL section_vals_val_get(gw_sec, "SIZE_LATTICE_SUM", i_val=bs_env%size_lattice_sum_V)
289 CALL section_vals_val_get(gw_sec, "KPOINTS_W", i_vals=bs_env%nkp_grid_chi_eps_W_input)
290 CALL section_vals_val_get(gw_sec, "HEDIN_SHIFT", l_val=bs_env%do_hedin_shift)
291 CALL section_vals_val_get(gw_sec, "FREQ_MAX_FIT", r_val=bs_env%freq_max_fit)
292
293 CALL timestop(handle)
294
295 END SUBROUTINE read_gw_input_parameters
296
297! **************************************************************************************************
298!> \brief ...
299!> \param qs_env ...
300!> \param bs_env ...
301! **************************************************************************************************
302 SUBROUTINE setup_ao_and_ri_basis_set(qs_env, bs_env)
303 TYPE(qs_environment_type), POINTER :: qs_env
304 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
305
306 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_AO_and_RI_basis_set'
307
308 INTEGER :: handle, natom, nkind
309 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
310 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
311
312 CALL timeset(routinen, handle)
313
314 CALL get_qs_env(qs_env, &
315 qs_kind_set=qs_kind_set, &
316 particle_set=particle_set, &
317 natom=natom, nkind=nkind)
318
319 ! set up basis
320 ALLOCATE (bs_env%sizes_RI(natom), bs_env%sizes_AO(natom))
321 ALLOCATE (bs_env%basis_set_RI(nkind), bs_env%basis_set_AO(nkind))
322
323 CALL basis_set_list_setup(bs_env%basis_set_RI, "RI_AUX", qs_kind_set)
324 CALL basis_set_list_setup(bs_env%basis_set_AO, "ORB", qs_kind_set)
325
326 CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_RI, &
327 basis=bs_env%basis_set_RI)
328 CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_AO, &
329 basis=bs_env%basis_set_AO)
330
331 CALL timestop(handle)
332
333 END SUBROUTINE setup_ao_and_ri_basis_set
334
335! **************************************************************************************************
336!> \brief ...
337!> \param qs_env ...
338!> \param bs_env ...
339! **************************************************************************************************
340 SUBROUTINE get_ri_basis_and_basis_function_indices(qs_env, bs_env)
341 TYPE(qs_environment_type), POINTER :: qs_env
342 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
343
344 CHARACTER(LEN=*), PARAMETER :: routinen = 'get_RI_basis_and_basis_function_indices'
345
346 INTEGER :: handle, i_ri, iatom, ikind, iset, &
347 max_ao_bf_per_atom, n_ao_test, n_atom, &
348 n_kind, n_ri, nset, nsgf, u
349 INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of
350 INTEGER, DIMENSION(:), POINTER :: l_max, l_min, nsgf_set
351 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
352 TYPE(gto_basis_set_type), POINTER :: basis_set_a
353 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
354
355 CALL timeset(routinen, handle)
356
357 ! determine RI basis set size
358 CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
359
360 n_kind = SIZE(qs_kind_set)
361 n_atom = bs_env%n_atom
362
363 CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of)
364
365 DO ikind = 1, n_kind
366 CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set_a, &
367 basis_type="RI_AUX")
368 IF (.NOT. ASSOCIATED(basis_set_a)) THEN
369 CALL cp_abort(__location__, &
370 "At least one RI_AUX basis set was not explicitly invoked in &KIND-section.")
371 END IF
372 END DO
373
374 ALLOCATE (bs_env%i_RI_start_from_atom(n_atom))
375 ALLOCATE (bs_env%i_RI_end_from_atom(n_atom))
376 ALLOCATE (bs_env%i_ao_start_from_atom(n_atom))
377 ALLOCATE (bs_env%i_ao_end_from_atom(n_atom))
378
379 n_ri = 0
380 DO iatom = 1, n_atom
381 bs_env%i_RI_start_from_atom(iatom) = n_ri + 1
382 ikind = kind_of(iatom)
383 CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="RI_AUX")
384 n_ri = n_ri + nsgf
385 bs_env%i_RI_end_from_atom(iatom) = n_ri
386 END DO
387 bs_env%n_RI = n_ri
388
389 max_ao_bf_per_atom = 0
390 n_ao_test = 0
391 DO iatom = 1, n_atom
392 bs_env%i_ao_start_from_atom(iatom) = n_ao_test + 1
393 ikind = kind_of(iatom)
394 CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="ORB")
395 n_ao_test = n_ao_test + nsgf
396 bs_env%i_ao_end_from_atom(iatom) = n_ao_test
397 max_ao_bf_per_atom = max(max_ao_bf_per_atom, nsgf)
398 END DO
399 cpassert(n_ao_test == bs_env%n_ao)
400 bs_env%max_AO_bf_per_atom = max_ao_bf_per_atom
401
402 ALLOCATE (bs_env%l_RI(n_ri))
403 i_ri = 0
404 DO iatom = 1, n_atom
405 ikind = kind_of(iatom)
406
407 nset = bs_env%basis_set_RI(ikind)%gto_basis_set%nset
408 l_max => bs_env%basis_set_RI(ikind)%gto_basis_set%lmax
409 l_min => bs_env%basis_set_RI(ikind)%gto_basis_set%lmin
410 nsgf_set => bs_env%basis_set_RI(ikind)%gto_basis_set%nsgf_set
411
412 DO iset = 1, nset
413 cpassert(l_max(iset) == l_min(iset))
414 bs_env%l_RI(i_ri + 1:i_ri + nsgf_set(iset)) = l_max(iset)
415 i_ri = i_ri + nsgf_set(iset)
416 END DO
417
418 END DO
419 cpassert(i_ri == n_ri)
420
421 u = bs_env%unit_nr
422
423 IF (u > 0) THEN
424 WRITE (u, fmt="(T2,A)") " "
425 WRITE (u, fmt="(T2,2A,T75,I8)") "Number of auxiliary Gaussian basis functions ", &
426 χε"for , , W", n_ri
427 END IF
428
429 CALL timestop(handle)
430
431 END SUBROUTINE get_ri_basis_and_basis_function_indices
432
433! **************************************************************************************************
434!> \brief ...
435!> \param bs_env ...
436!> \param kpoints ...
437! **************************************************************************************************
438 SUBROUTINE setup_kpoints_chi_eps_w(bs_env, kpoints)
439
440 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
441 TYPE(kpoint_type), POINTER :: kpoints
442
443 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_kpoints_chi_eps_W'
444
445 INTEGER :: handle, i_dim, n_dim, nkp, nkp_extra, &
446 nkp_orig, u
447 INTEGER, DIMENSION(3) :: nkp_grid, nkp_grid_extra, periodic
448 REAL(kind=dp) :: exp_s_p, n_dim_inv
449
450 CALL timeset(routinen, handle)
451
452 ! routine adapted from mp2_integrals.F
453 NULLIFY (kpoints)
454 CALL kpoint_create(kpoints)
455
456 kpoints%kp_scheme = "GENERAL"
457
458 periodic(1:3) = bs_env%periodic(1:3)
459
460 cpassert(SIZE(bs_env%nkp_grid_chi_eps_W_input) == 3)
461
462 IF (bs_env%nkp_grid_chi_eps_W_input(1) > 0 .AND. &
463 bs_env%nkp_grid_chi_eps_W_input(2) > 0 .AND. &
464 bs_env%nkp_grid_chi_eps_W_input(3) > 0) THEN
465 ! 1. k-point mesh for χ, ε, W from input
466 DO i_dim = 1, 3
467 SELECT CASE (periodic(i_dim))
468 CASE (0)
469 nkp_grid(i_dim) = 1
470 nkp_grid_extra(i_dim) = 1
471 CASE (1)
472 nkp_grid(i_dim) = bs_env%nkp_grid_chi_eps_W_input(i_dim)
473 nkp_grid_extra(i_dim) = nkp_grid(i_dim)*2
474 CASE DEFAULT
475 cpabort("Error in periodicity.")
476 END SELECT
477 END DO
478
479 ELSE IF (bs_env%nkp_grid_chi_eps_W_input(1) == -1 .AND. &
480 bs_env%nkp_grid_chi_eps_W_input(2) == -1 .AND. &
481 bs_env%nkp_grid_chi_eps_W_input(3) == -1) THEN
482 ! 2. automatic k-point mesh for χ, ε, W
483
484 DO i_dim = 1, 3
485
486 cpassert(periodic(i_dim) == 0 .OR. periodic(i_dim) == 1)
487
488 SELECT CASE (periodic(i_dim))
489 CASE (0)
490 nkp_grid(i_dim) = 1
491 nkp_grid_extra(i_dim) = 1
492 CASE (1)
493 SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
494 CASE (large_cell_gamma)
495 nkp_grid(i_dim) = 4
496 nkp_grid_extra(i_dim) = 6
497 CASE (small_cell_full_kp)
498 nkp_grid(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*4
499 nkp_grid_extra(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*8
500 END SELECT
501 CASE DEFAULT
502 cpabort("Error in periodicity.")
503 END SELECT
504
505 END DO
506
507 ELSE
508
509 cpabort("An error occured when setting up the k-mesh for W.")
510
511 END IF
512
513 nkp_orig = max(nkp_grid(1)*nkp_grid(2)*nkp_grid(3)/2, 1)
514
515 nkp_extra = nkp_grid_extra(1)*nkp_grid_extra(2)*nkp_grid_extra(3)/2
516
517 nkp = nkp_orig + nkp_extra
518
519 kpoints%nkp_grid(1:3) = nkp_grid(1:3)
520 kpoints%nkp = nkp
521
522 bs_env%nkp_grid_chi_eps_W_orig(1:3) = nkp_grid(1:3)
523 bs_env%nkp_grid_chi_eps_W_extra(1:3) = nkp_grid_extra(1:3)
524 bs_env%nkp_chi_eps_W_orig = nkp_orig
525 bs_env%nkp_chi_eps_W_extra = nkp_extra
526 bs_env%nkp_chi_eps_W_orig_plus_extra = nkp
527
528 ALLOCATE (kpoints%xkp(3, nkp), kpoints%wkp(nkp))
529 ALLOCATE (bs_env%wkp_no_extra(nkp), bs_env%wkp_s_p(nkp))
530
531 CALL compute_xkp(kpoints%xkp, 1, nkp_orig, nkp_grid)
532 CALL compute_xkp(kpoints%xkp, nkp_orig + 1, nkp, nkp_grid_extra)
533
534 n_dim = sum(periodic)
535 IF (n_dim == 0) THEN
536 ! molecules
537 kpoints%wkp(1) = 1.0_dp
538 bs_env%wkp_s_p(1) = 1.0_dp
539 bs_env%wkp_no_extra(1) = 1.0_dp
540 ELSE
541
542 n_dim_inv = 1.0_dp/real(n_dim, kind=dp)
543
544 ! k-point weights are chosen to automatically extrapolate the k-point mesh
545 CALL compute_wkp(kpoints%wkp(1:nkp_orig), nkp_orig, nkp_extra, n_dim_inv)
546 CALL compute_wkp(kpoints%wkp(nkp_orig + 1:nkp), nkp_extra, nkp_orig, n_dim_inv)
547
548 bs_env%wkp_no_extra(1:nkp_orig) = 0.0_dp
549 bs_env%wkp_no_extra(nkp_orig + 1:nkp) = 1.0_dp/real(nkp_extra, kind=dp)
550
551 IF (n_dim == 3) THEN
552 ! W_PQ(k) for an s-function P and a p-function Q diverges as 1/k at k=0
553 ! (instead of 1/k^2 for P and Q both being s-functions).
554 exp_s_p = 2.0_dp*n_dim_inv
555 CALL compute_wkp(bs_env%wkp_s_p(1:nkp_orig), nkp_orig, nkp_extra, exp_s_p)
556 CALL compute_wkp(bs_env%wkp_s_p(nkp_orig + 1:nkp), nkp_extra, nkp_orig, exp_s_p)
557 ELSE
558 bs_env%wkp_s_p(1:nkp) = bs_env%wkp_no_extra(1:nkp)
559 END IF
560
561 END IF
562
563 IF (bs_env%approx_kp_extrapol) THEN
564 bs_env%wkp_orig = 1.0_dp/real(nkp_orig, kind=dp)
565 END IF
566
567 ! heuristic parameter: how many k-points for χ, ε, and W are used simultaneously
568 ! (less simultaneous k-points: less memory, but more computational effort because of
569 ! recomputation of V(k))
570 bs_env%nkp_chi_eps_W_batch = 4
571
572 bs_env%num_chi_eps_W_batches = (bs_env%nkp_chi_eps_W_orig_plus_extra - 1)/ &
573 bs_env%nkp_chi_eps_W_batch + 1
574
575 u = bs_env%unit_nr
576
577 IF (u > 0) THEN
578 WRITE (u, fmt="(T2,A)") " "
579 WRITE (u, fmt="(T2,1A,T71,3I4)") χε"K-point mesh 1 for , , W", nkp_grid(1:3)
580 WRITE (u, fmt="(T2,2A,T71,3I4)") χε"K-point mesh 2 for , , W ", &
581 "(for k-point extrapolation of W)", nkp_grid_extra(1:3)
582 WRITE (u, fmt="(T2,A,T80,L)") "Approximate the k-point extrapolation", &
583 bs_env%approx_kp_extrapol
584 END IF
585
586 CALL timestop(handle)
587
588 END SUBROUTINE setup_kpoints_chi_eps_w
589
590! **************************************************************************************************
591!> \brief ...
592!> \param xkp ...
593!> \param ikp_start ...
594!> \param ikp_end ...
595!> \param grid ...
596! **************************************************************************************************
597 SUBROUTINE compute_xkp(xkp, ikp_start, ikp_end, grid)
598
599 REAL(kind=dp), DIMENSION(:, :), POINTER :: xkp
600 INTEGER :: ikp_start, ikp_end
601 INTEGER, DIMENSION(3) :: grid
602
603 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_xkp'
604
605 INTEGER :: handle, i, ix, iy, iz
606
607 CALL timeset(routinen, handle)
608
609 i = ikp_start
610 DO ix = 1, grid(1)
611 DO iy = 1, grid(2)
612 DO iz = 1, grid(3)
613
614 IF (i > ikp_end) cycle
615
616 xkp(1, i) = real(2*ix - grid(1) - 1, kind=dp)/(2._dp*real(grid(1), kind=dp))
617 xkp(2, i) = real(2*iy - grid(2) - 1, kind=dp)/(2._dp*real(grid(2), kind=dp))
618 xkp(3, i) = real(2*iz - grid(3) - 1, kind=dp)/(2._dp*real(grid(3), kind=dp))
619 i = i + 1
620
621 END DO
622 END DO
623 END DO
624
625 CALL timestop(handle)
626
627 END SUBROUTINE compute_xkp
628
629! **************************************************************************************************
630!> \brief ...
631!> \param wkp ...
632!> \param nkp_1 ...
633!> \param nkp_2 ...
634!> \param exponent ...
635! **************************************************************************************************
636 SUBROUTINE compute_wkp(wkp, nkp_1, nkp_2, exponent)
637 REAL(kind=dp), DIMENSION(:) :: wkp
638 INTEGER :: nkp_1, nkp_2
639 REAL(kind=dp) :: exponent
640
641 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_wkp'
642
643 INTEGER :: handle
644 REAL(kind=dp) :: nkp_ratio
645
646 CALL timeset(routinen, handle)
647
648 nkp_ratio = real(nkp_2, kind=dp)/real(nkp_1, kind=dp)
649
650 wkp(:) = 1.0_dp/real(nkp_1, kind=dp)/(1.0_dp - nkp_ratio**exponent)
651
652 CALL timestop(handle)
653
654 END SUBROUTINE compute_wkp
655
656! **************************************************************************************************
657!> \brief ...
658!> \param qs_env ...
659!> \param bs_env ...
660! **************************************************************************************************
661 SUBROUTINE allocate_matrices(qs_env, bs_env)
662 TYPE(qs_environment_type), POINTER :: qs_env
663 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
664
665 CHARACTER(LEN=*), PARAMETER :: routinen = 'allocate_matrices'
666
667 INTEGER :: handle, i_t
668 TYPE(cp_blacs_env_type), POINTER :: blacs_env, blacs_env_tensor
669 TYPE(cp_fm_struct_type), POINTER :: fm_struct, fm_struct_ri_global
670 TYPE(mp_para_env_type), POINTER :: para_env
671
672 CALL timeset(routinen, handle)
673
674 CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
675
676 fm_struct => bs_env%fm_ks_Gamma(1)%matrix_struct
677
678 CALL cp_fm_create(bs_env%fm_Gocc, fm_struct)
679 CALL cp_fm_create(bs_env%fm_Gvir, fm_struct)
680
681 NULLIFY (fm_struct_ri_global)
682 CALL cp_fm_struct_create(fm_struct_ri_global, context=blacs_env, nrow_global=bs_env%n_RI, &
683 ncol_global=bs_env%n_RI, para_env=para_env)
684 CALL cp_fm_create(bs_env%fm_RI_RI, fm_struct_ri_global)
685 CALL cp_fm_create(bs_env%fm_chi_Gamma_freq, fm_struct_ri_global)
686 CALL cp_fm_create(bs_env%fm_W_MIC_freq, fm_struct_ri_global)
687 IF (bs_env%approx_kp_extrapol) THEN
688 CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_extra, fm_struct_ri_global)
689 CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_no_extra, fm_struct_ri_global)
690 CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_extra, 0.0_dp)
691 CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_no_extra, 0.0_dp)
692 END IF
693 CALL cp_fm_struct_release(fm_struct_ri_global)
694
695 ! create blacs_env for subgroups of tensor operations
696 NULLIFY (blacs_env_tensor)
697 CALL cp_blacs_env_create(blacs_env=blacs_env_tensor, para_env=bs_env%para_env_tensor)
698
699 ! allocate dbcsr matrices in the tensor subgroup; actually, one only needs a small
700 ! subset of blocks in the tensor subgroup, however, all atomic blocks are allocated.
701 ! One might think of creating a dbcsr matrix with only the blocks that are needed
702 ! in the tensor subgroup
703 CALL create_mat_munu(bs_env%mat_ao_ao_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
704 blacs_env_tensor, do_ri_aux_basis=.false.)
705
706 CALL create_mat_munu(bs_env%mat_RI_RI_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
707 blacs_env_tensor, do_ri_aux_basis=.true.)
708
709 CALL create_mat_munu(bs_env%mat_RI_RI, qs_env, bs_env%eps_atom_grid_2d_mat, &
710 blacs_env, do_ri_aux_basis=.true.)
711
712 CALL cp_blacs_env_release(blacs_env_tensor)
713
714 NULLIFY (bs_env%mat_chi_Gamma_tau)
715 CALL dbcsr_allocate_matrix_set(bs_env%mat_chi_Gamma_tau, bs_env%num_time_freq_points)
716
717 DO i_t = 1, bs_env%num_time_freq_points
718 ALLOCATE (bs_env%mat_chi_Gamma_tau(i_t)%matrix)
719 CALL dbcsr_create(bs_env%mat_chi_Gamma_tau(i_t)%matrix, template=bs_env%mat_RI_RI%matrix)
720 END DO
721
722 CALL timestop(handle)
723
724 END SUBROUTINE allocate_matrices
725
726! **************************************************************************************************
727!> \brief ...
728!> \param bs_env ...
729! **************************************************************************************************
730 SUBROUTINE allocate_gw_eigenvalues(bs_env)
731 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
732
733 CHARACTER(LEN=*), PARAMETER :: routinen = 'allocate_GW_eigenvalues'
734
735 INTEGER :: handle
736
737 CALL timeset(routinen, handle)
738
739 ALLOCATE (bs_env%eigenval_G0W0(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
740 ALLOCATE (bs_env%eigenval_HF(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
741
742 CALL timestop(handle)
743
744 END SUBROUTINE allocate_gw_eigenvalues
745
746! **************************************************************************************************
747!> \brief ...
748!> \param qs_env ...
749!> \param bs_env ...
750! **************************************************************************************************
751 SUBROUTINE create_tensors(qs_env, bs_env)
752 TYPE(qs_environment_type), POINTER :: qs_env
753 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
754
755 CHARACTER(LEN=*), PARAMETER :: routinen = 'create_tensors'
756
757 INTEGER :: handle
758
759 CALL timeset(routinen, handle)
760
761 CALL init_interaction_radii(bs_env)
762
763 ! split blocks does not improve load balancing/efficienfy for tensor contraction, so we go
764 ! with the standard atomic blocks
765 CALL create_3c_t(bs_env%t_RI_AO__AO, bs_env%para_env_tensor, "(RI AO | AO)", [1, 2], [3], &
766 bs_env%sizes_RI, bs_env%sizes_AO, &
767 create_nl_3c=.true., nl_3c=bs_env%nl_3c, qs_env=qs_env)
768 CALL create_3c_t(bs_env%t_RI__AO_AO, bs_env%para_env_tensor, "(RI | AO AO)", [1], [2, 3], &
769 bs_env%sizes_RI, bs_env%sizes_AO)
770
771 CALL create_2c_t(bs_env, bs_env%sizes_RI, bs_env%sizes_AO)
772
773 CALL timestop(handle)
774
775 END SUBROUTINE create_tensors
776
777! **************************************************************************************************
778!> \brief ...
779!> \param qs_env ...
780!> \param bs_env ...
781! **************************************************************************************************
782 SUBROUTINE check_sparsity_3c(qs_env, bs_env)
783 TYPE(qs_environment_type), POINTER :: qs_env
784 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
785
786 CHARACTER(LEN=*), PARAMETER :: routinen = 'check_sparsity_3c'
787
788 INTEGER :: handle, n_atom_step, ri_atom
789 INTEGER(int_8) :: mem, non_zero_elements_sum, nze
790 REAL(dp) :: max_dist_ao_atoms, occ, occupation_sum
791 REAL(kind=dp) :: t1, t2
792 TYPE(dbt_type) :: t_3c_global
793 TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_global_array
794 TYPE(neighbor_list_3c_type) :: nl_3c_global
795
796 CALL timeset(routinen, handle)
797
798 ! check the sparsity of 3c integral tensor (µν|P); calculate maximum distance between
799 ! AO atoms µ, ν where at least a single integral (µν|P) is larger than the filter threshold
800 CALL create_3c_t(t_3c_global, bs_env%para_env, "(RI AO | AO)", [1, 2], [3], &
801 bs_env%sizes_RI, bs_env%sizes_AO, &
802 create_nl_3c=.true., nl_3c=nl_3c_global, qs_env=qs_env)
803
804 CALL m_memory(mem)
805 CALL bs_env%para_env%max(mem)
806
807 ALLOCATE (t_3c_global_array(1, 1))
808 CALL dbt_create(t_3c_global, t_3c_global_array(1, 1))
809
810 CALL bs_env%para_env%sync()
811 t1 = m_walltime()
812
813 occupation_sum = 0.0_dp
814 non_zero_elements_sum = 0
815 max_dist_ao_atoms = 0.0_dp
816 n_atom_step = int(sqrt(real(bs_env%n_atom, kind=dp)))
817 ! do not compute full 3c integrals at once because it may cause out of memory
818 DO ri_atom = 1, bs_env%n_atom, n_atom_step
819
820 CALL build_3c_integrals(t_3c_global_array, &
821 bs_env%eps_filter, &
822 qs_env, &
823 nl_3c_global, &
824 int_eps=bs_env%eps_filter, &
825 basis_i=bs_env%basis_set_RI, &
826 basis_j=bs_env%basis_set_AO, &
827 basis_k=bs_env%basis_set_AO, &
828 bounds_i=[ri_atom, min(ri_atom + n_atom_step - 1, bs_env%n_atom)], &
829 potential_parameter=bs_env%ri_metric, &
830 desymmetrize=.false.)
831
832 CALL dbt_filter(t_3c_global_array(1, 1), bs_env%eps_filter)
833
834 CALL bs_env%para_env%sync()
835
836 CALL get_tensor_occupancy(t_3c_global_array(1, 1), nze, occ)
837 non_zero_elements_sum = non_zero_elements_sum + nze
838 occupation_sum = occupation_sum + occ
839
840 CALL get_max_dist_ao_atoms(t_3c_global_array(1, 1), max_dist_ao_atoms, qs_env)
841
842 CALL dbt_clear(t_3c_global_array(1, 1))
843
844 END DO
845
846 t2 = m_walltime()
847
848 bs_env%occupation_3c_int = occupation_sum
849 bs_env%max_dist_AO_atoms = max_dist_ao_atoms
850
851 CALL dbt_destroy(t_3c_global)
852 CALL dbt_destroy(t_3c_global_array(1, 1))
853 DEALLOCATE (t_3c_global_array)
854
855 CALL neighbor_list_3c_destroy(nl_3c_global)
856
857 IF (bs_env%unit_nr > 0) THEN
858 WRITE (bs_env%unit_nr, '(T2,A)') ''
859 WRITE (bs_env%unit_nr, '(T2,A,F27.1,A)') &
860 µν'Computed 3-center integrals (|P), execution time', t2 - t1, ' s'
861 WRITE (bs_env%unit_nr, '(T2,A,F48.3,A)') µν'Percentage of non-zero (|P)', &
862 occupation_sum*100, ' %'
863 WRITE (bs_env%unit_nr, '(T2,A,F33.1,A)') µνµν'Max. distance between , in non-zero (|P)', &
864 max_dist_ao_atoms*angstrom, ' A'
865 WRITE (bs_env%unit_nr, '(T2,2A,I20,A)') 'Required memory if storing all 3-center ', &
866 µν'integrals (|P)', int(real(non_zero_elements_sum, kind=dp)*8.0e-9_dp), ' GB'
867 END IF
868
869 CALL timestop(handle)
870
871 END SUBROUTINE check_sparsity_3c
872
873! **************************************************************************************************
874!> \brief ...
875!> \param bs_env ...
876!> \param sizes_RI ...
877!> \param sizes_AO ...
878! **************************************************************************************************
879 SUBROUTINE create_2c_t(bs_env, sizes_RI, sizes_AO)
880 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
881 INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_ri, sizes_ao
882
883 CHARACTER(LEN=*), PARAMETER :: routinen = 'create_2c_t'
884
885 INTEGER :: handle
886 INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_1, dist_2
887 INTEGER, DIMENSION(2) :: pdims_2d
888 TYPE(dbt_pgrid_type) :: pgrid_2d
889
890 CALL timeset(routinen, handle)
891
892 ! inspired from rpa_im_time.F / hfx_types.F
893
894 pdims_2d = 0
895 CALL dbt_pgrid_create(bs_env%para_env_tensor, pdims_2d, pgrid_2d)
896
897 CALL create_2c_tensor(bs_env%t_G, dist_1, dist_2, pgrid_2d, sizes_ao, sizes_ao, &
898 name="(AO | AO)")
899 DEALLOCATE (dist_1, dist_2)
900 CALL create_2c_tensor(bs_env%t_chi, dist_1, dist_2, pgrid_2d, sizes_ri, sizes_ri, &
901 name="(RI | RI)")
902 DEALLOCATE (dist_1, dist_2)
903 CALL create_2c_tensor(bs_env%t_W, dist_1, dist_2, pgrid_2d, sizes_ri, sizes_ri, &
904 name="(RI | RI)")
905 DEALLOCATE (dist_1, dist_2)
906 CALL dbt_pgrid_destroy(pgrid_2d)
907
908 CALL timestop(handle)
909
910 END SUBROUTINE create_2c_t
911
912! **************************************************************************************************
913!> \brief ...
914!> \param tensor ...
915!> \param para_env ...
916!> \param tensor_name ...
917!> \param map1 ...
918!> \param map2 ...
919!> \param sizes_RI ...
920!> \param sizes_AO ...
921!> \param create_nl_3c ...
922!> \param nl_3c ...
923!> \param qs_env ...
924! **************************************************************************************************
925 SUBROUTINE create_3c_t(tensor, para_env, tensor_name, map1, map2, sizes_RI, sizes_AO, &
926 create_nl_3c, nl_3c, qs_env)
927 TYPE(dbt_type) :: tensor
928 TYPE(mp_para_env_type), POINTER :: para_env
929 CHARACTER(LEN=12) :: tensor_name
930 INTEGER, DIMENSION(:) :: map1, map2
931 INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_ri, sizes_ao
932 LOGICAL, OPTIONAL :: create_nl_3c
933 TYPE(neighbor_list_3c_type), OPTIONAL :: nl_3c
934 TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
935
936 CHARACTER(LEN=*), PARAMETER :: routinen = 'create_3c_t'
937
938 INTEGER :: handle, nkind
939 INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_ao_1, dist_ao_2, dist_ri
940 INTEGER, DIMENSION(3) :: pcoord, pdims, pdims_3d
941 LOGICAL :: my_create_nl_3c
942 TYPE(dbt_pgrid_type) :: pgrid_3d
943 TYPE(distribution_3d_type) :: dist_3d
944 TYPE(mp_cart_type) :: mp_comm_t3c_2
945 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
946
947 CALL timeset(routinen, handle)
948
949 pdims_3d = 0
950 CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
951 CALL create_3c_tensor(tensor, dist_ri, dist_ao_1, dist_ao_2, &
952 pgrid_3d, sizes_ri, sizes_ao, sizes_ao, &
953 map1=map1, map2=map2, name=tensor_name)
954
955 IF (PRESENT(create_nl_3c)) THEN
956 my_create_nl_3c = create_nl_3c
957 ELSE
958 my_create_nl_3c = .false.
959 END IF
960
961 IF (my_create_nl_3c) THEN
962 CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set)
963 CALL dbt_mp_environ_pgrid(pgrid_3d, pdims, pcoord)
964 CALL mp_comm_t3c_2%create(pgrid_3d%mp_comm_2d, 3, pdims)
965 CALL distribution_3d_create(dist_3d, dist_ri, dist_ao_1, dist_ao_2, &
966 nkind, particle_set, mp_comm_t3c_2, own_comm=.true.)
967
968 CALL build_3c_neighbor_lists(nl_3c, &
969 qs_env%bs_env%basis_set_RI, &
970 qs_env%bs_env%basis_set_AO, &
971 qs_env%bs_env%basis_set_AO, &
972 dist_3d, qs_env%bs_env%ri_metric, &
973 "GW_3c_nl", qs_env, own_dist=.true.)
974 END IF
975
976 DEALLOCATE (dist_ri, dist_ao_1, dist_ao_2)
977 CALL dbt_pgrid_destroy(pgrid_3d)
978
979 CALL timestop(handle)
980
981 END SUBROUTINE create_3c_t
982
983! **************************************************************************************************
984!> \brief ...
985!> \param bs_env ...
986! **************************************************************************************************
987 SUBROUTINE init_interaction_radii(bs_env)
988 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
989
990 CHARACTER(LEN=*), PARAMETER :: routinen = 'init_interaction_radii'
991
992 INTEGER :: handle, ibasis
993 TYPE(gto_basis_set_type), POINTER :: orb_basis, ri_basis
994
995 CALL timeset(routinen, handle)
996
997 DO ibasis = 1, SIZE(bs_env%basis_set_AO)
998
999 orb_basis => bs_env%basis_set_AO(ibasis)%gto_basis_set
1000 CALL init_interaction_radii_orb_basis(orb_basis, bs_env%eps_filter)
1001
1002 ri_basis => bs_env%basis_set_RI(ibasis)%gto_basis_set
1003 CALL init_interaction_radii_orb_basis(ri_basis, bs_env%eps_filter)
1004
1005 END DO
1006
1007 CALL timestop(handle)
1008
1009 END SUBROUTINE init_interaction_radii
1010
1011! **************************************************************************************************
1012!> \brief ...
1013!> \param t_3c_int ...
1014!> \param max_dist_AO_atoms ...
1015!> \param qs_env ...
1016! **************************************************************************************************
1017 SUBROUTINE get_max_dist_ao_atoms(t_3c_int, max_dist_AO_atoms, qs_env)
1018 TYPE(dbt_type) :: t_3c_int
1019 REAL(kind=dp) :: max_dist_ao_atoms
1020 TYPE(qs_environment_type), POINTER :: qs_env
1021
1022 CHARACTER(LEN=*), PARAMETER :: routinen = 'get_max_dist_AO_atoms'
1023
1024 INTEGER :: atom_1, atom_2, handle, num_cells
1025 INTEGER, DIMENSION(3) :: atom_ind
1026 INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
1027 REAL(kind=dp) :: abs_rab
1028 REAL(kind=dp), DIMENSION(3) :: rab
1029 TYPE(cell_type), POINTER :: cell
1030 TYPE(dbt_iterator_type) :: iter
1031 TYPE(mp_para_env_type), POINTER :: para_env
1032 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1033
1034 CALL timeset(routinen, handle)
1035
1036 NULLIFY (cell, particle_set, para_env)
1037 CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set, para_env=para_env)
1038
1039!$OMP PARALLEL DEFAULT(NONE) &
1040!$OMP SHARED(t_3c_int, max_dist_AO_atoms, num_cells, index_to_cell, particle_set, cell) &
1041!$OMP PRIVATE(iter,atom_ind,rab, abs_rab, atom_1, atom_2)
1042 CALL dbt_iterator_start(iter, t_3c_int)
1043 DO WHILE (dbt_iterator_blocks_left(iter))
1044 CALL dbt_iterator_next_block(iter, atom_ind)
1045
1046 atom_1 = atom_ind(2)
1047 atom_2 = atom_ind(3)
1048
1049 rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
1050
1051 abs_rab = sqrt(rab(1)**2 + rab(2)**2 + rab(3)**2)
1052
1053 max_dist_ao_atoms = max(max_dist_ao_atoms, abs_rab)
1054
1055 END DO
1056 CALL dbt_iterator_stop(iter)
1057!$OMP END PARALLEL
1058
1059 CALL para_env%max(max_dist_ao_atoms)
1060
1061 CALL timestop(handle)
1062
1063 END SUBROUTINE get_max_dist_ao_atoms
1064
1065! **************************************************************************************************
1066!> \brief ...
1067!> \param bs_env ...
1068! **************************************************************************************************
1069 SUBROUTINE set_sparsity_parallelization_parameters(bs_env)
1070 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1071
1072 CHARACTER(LEN=*), PARAMETER :: routinen = 'set_sparsity_parallelization_parameters'
1073
1074 INTEGER :: handle, i_ivl, il_ivl, j_ivl, n_atom_per_il_ivl, n_atom_per_ivl, n_intervals_i, &
1075 n_intervals_inner_loop_atoms, n_intervals_j, u
1076 INTEGER(KIND=int_8) :: input_memory_per_proc
1077
1078 CALL timeset(routinen, handle)
1079
1080 ! heuristic parameter to prevent out of memory
1081 bs_env%safety_factor_memory = 0.10_dp
1082
1083 input_memory_per_proc = int(bs_env%input_memory_per_proc_GB*1.0e9_dp, kind=int_8)
1084
1085 ! choose atomic range for λ ("i_atom"), ν ("j_atom") in
1086 ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1087 ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1088 ! such that M and N fit into the memory
1089 n_atom_per_ivl = int(sqrt(bs_env%safety_factor_memory*input_memory_per_proc &
1090 *bs_env%group_size_tensor/24/bs_env%n_RI &
1091 /sqrt(bs_env%occupation_3c_int)))/bs_env%max_AO_bf_per_atom
1092
1093 n_intervals_i = (bs_env%n_atom_i - 1)/n_atom_per_ivl + 1
1094 n_intervals_j = (bs_env%n_atom_j - 1)/n_atom_per_ivl + 1
1095
1096 bs_env%n_atom_per_interval_ij = n_atom_per_ivl
1097 bs_env%n_intervals_i = n_intervals_i
1098 bs_env%n_intervals_j = n_intervals_j
1099
1100 ALLOCATE (bs_env%i_atom_intervals(2, n_intervals_i))
1101 ALLOCATE (bs_env%j_atom_intervals(2, n_intervals_j))
1102
1103 DO i_ivl = 1, n_intervals_i
1104 bs_env%i_atom_intervals(1, i_ivl) = (i_ivl - 1)*n_atom_per_ivl + bs_env%atoms_i(1)
1105 bs_env%i_atom_intervals(2, i_ivl) = min(i_ivl*n_atom_per_ivl + bs_env%atoms_i(1) - 1, &
1106 bs_env%atoms_i(2))
1107 END DO
1108
1109 DO j_ivl = 1, n_intervals_j
1110 bs_env%j_atom_intervals(1, j_ivl) = (j_ivl - 1)*n_atom_per_ivl + bs_env%atoms_j(1)
1111 bs_env%j_atom_intervals(2, j_ivl) = min(j_ivl*n_atom_per_ivl + bs_env%atoms_j(1) - 1, &
1112 bs_env%atoms_j(2))
1113 END DO
1114
1115 ALLOCATE (bs_env%skip_Sigma_occ(n_intervals_i, n_intervals_j))
1116 ALLOCATE (bs_env%skip_Sigma_vir(n_intervals_i, n_intervals_j))
1117 bs_env%skip_Sigma_occ(:, :) = .false.
1118 bs_env%skip_Sigma_vir(:, :) = .false.
1119
1120 ! choose atomic range for µ and σ ("inner loop (IL) atom") in
1121 ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1122 ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1123 n_atom_per_il_ivl = min(int(bs_env%safety_factor_memory*input_memory_per_proc &
1124 *bs_env%group_size_tensor/n_atom_per_ivl &
1125 /bs_env%max_AO_bf_per_atom &
1126 /bs_env%n_RI/8/sqrt(bs_env%occupation_3c_int) &
1127 /bs_env%max_AO_bf_per_atom), bs_env%n_atom)
1128
1129 n_intervals_inner_loop_atoms = (bs_env%n_atom - 1)/n_atom_per_il_ivl + 1
1130
1131 bs_env%n_atom_per_IL_interval = n_atom_per_il_ivl
1132 bs_env%n_intervals_inner_loop_atoms = n_intervals_inner_loop_atoms
1133
1134 ALLOCATE (bs_env%inner_loop_atom_intervals(2, n_intervals_inner_loop_atoms))
1135 DO il_ivl = 1, n_intervals_inner_loop_atoms
1136 bs_env%inner_loop_atom_intervals(1, il_ivl) = (il_ivl - 1)*n_atom_per_il_ivl + 1
1137 bs_env%inner_loop_atom_intervals(2, il_ivl) = min(il_ivl*n_atom_per_il_ivl, bs_env%n_atom)
1138 END DO
1139
1140 u = bs_env%unit_nr
1141 IF (u > 0) THEN
1142 WRITE (u, '(T2,A)') ''
1143 WRITE (u, '(T2,A,I33)') λντνλτ'Number of i and j atoms in M_P(), N_Q():', n_atom_per_ivl
1144 WRITE (u, '(T2,A,I18)') µλνµµνµλ'Number of inner loop atoms for in M_P = sum_ (|P) G_', &
1145 n_atom_per_il_ivl
1146 END IF
1147
1148 CALL timestop(handle)
1149
1150 END SUBROUTINE set_sparsity_parallelization_parameters
1151
1152! **************************************************************************************************
1153!> \brief ...
1154!> \param qs_env ...
1155!> \param bs_env ...
1156! **************************************************************************************************
1157 SUBROUTINE check_for_restart_files(qs_env, bs_env)
1158 TYPE(qs_environment_type), POINTER :: qs_env
1159 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1160
1161 CHARACTER(LEN=*), PARAMETER :: routinen = 'check_for_restart_files'
1162
1163 CHARACTER(LEN=9) :: frmt
1164 CHARACTER(len=default_path_length) :: project_name
1165 CHARACTER(len=default_string_length) :: f_chi, f_s_n, f_s_p, f_s_x, f_w_t, prefix
1166 INTEGER :: handle, i_spin, i_t_or_w, ind, n_spin, &
1167 num_time_freq_points
1168 LOGICAL :: chi_exists, sigma_neg_time_exists, &
1169 sigma_pos_time_exists, &
1170 sigma_x_spin_exists, w_time_exists
1171 TYPE(cp_logger_type), POINTER :: logger
1172 TYPE(section_vals_type), POINTER :: input, print_key
1173
1174 CALL timeset(routinen, handle)
1175
1176 num_time_freq_points = bs_env%num_time_freq_points
1177 n_spin = bs_env%n_spin
1178
1179 ALLOCATE (bs_env%read_chi(num_time_freq_points))
1180 ALLOCATE (bs_env%calc_chi(num_time_freq_points))
1181 ALLOCATE (bs_env%Sigma_c_exists(num_time_freq_points, n_spin))
1182
1183 CALL get_qs_env(qs_env, input=input)
1184
1185 logger => cp_get_default_logger()
1186 print_key => section_vals_get_subs_vals(input, 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART')
1187 project_name = cp_print_key_generate_filename(logger, print_key, extension="", &
1188 my_local=.false.)
1189 WRITE (prefix, '(2A)') trim(project_name), "-RESTART_"
1190 bs_env%prefix = prefix
1191
1192 bs_env%all_W_exist = .true.
1193
1194 DO i_t_or_w = 1, num_time_freq_points
1195
1196 IF (i_t_or_w < 10) THEN
1197 WRITE (frmt, '(A)') '(3A,I1,A)'
1198 WRITE (f_chi, frmt) trim(prefix), bs_env%chi_name, "_0", i_t_or_w, ".matrix"
1199 WRITE (f_w_t, frmt) trim(prefix), bs_env%W_time_name, "_0", i_t_or_w, ".matrix"
1200 ELSE IF (i_t_or_w < 100) THEN
1201 WRITE (frmt, '(A)') '(3A,I2,A)'
1202 WRITE (f_chi, frmt) trim(prefix), bs_env%chi_name, "_", i_t_or_w, ".matrix"
1203 WRITE (f_w_t, frmt) trim(prefix), bs_env%W_time_name, "_", i_t_or_w, ".matrix"
1204 ELSE
1205 cpabort('Please implement more than 99 time/frequency points.')
1206 END IF
1207
1208 INQUIRE (file=trim(f_chi), exist=chi_exists)
1209 INQUIRE (file=trim(f_w_t), exist=w_time_exists)
1210
1211 bs_env%read_chi(i_t_or_w) = chi_exists
1212 bs_env%calc_chi(i_t_or_w) = .NOT. chi_exists
1213
1214 bs_env%all_W_exist = bs_env%all_W_exist .AND. w_time_exists
1215
1216 ! the self-energy is spin-dependent
1217 DO i_spin = 1, n_spin
1218
1219 ind = i_t_or_w + (i_spin - 1)*num_time_freq_points
1220
1221 IF (ind < 10) THEN
1222 WRITE (frmt, '(A)') '(3A,I1,A)'
1223 WRITE (f_s_p, frmt) trim(prefix), bs_env%Sigma_p_name, "_0", ind, ".matrix"
1224 WRITE (f_s_n, frmt) trim(prefix), bs_env%Sigma_n_name, "_0", ind, ".matrix"
1225 ELSE IF (i_t_or_w < 100) THEN
1226 WRITE (frmt, '(A)') '(3A,I2,A)'
1227 WRITE (f_s_p, frmt) trim(prefix), bs_env%Sigma_p_name, "_", ind, ".matrix"
1228 WRITE (f_s_n, frmt) trim(prefix), bs_env%Sigma_n_name, "_", ind, ".matrix"
1229 END IF
1230
1231 INQUIRE (file=trim(f_s_p), exist=sigma_pos_time_exists)
1232 INQUIRE (file=trim(f_s_n), exist=sigma_neg_time_exists)
1233
1234 bs_env%Sigma_c_exists(i_t_or_w, i_spin) = sigma_pos_time_exists .AND. &
1235 sigma_neg_time_exists
1236
1237 END DO
1238
1239 END DO
1240
1241 ! Marek : In the RTBSE run, check also for zero frequency W
1242 IF (bs_env%rtp_method == rtp_method_bse) THEN
1243 WRITE (f_w_t, '(3A,I1,A)') trim(prefix), "W_freq_rtp", "_0", 0, ".matrix"
1244 INQUIRE (file=trim(f_w_t), exist=w_time_exists)
1245 bs_env%all_W_exist = bs_env%all_W_exist .AND. w_time_exists
1246 END IF
1247
1248 IF (bs_env%all_W_exist) THEN
1249 bs_env%read_chi(:) = .false.
1250 bs_env%calc_chi(:) = .false.
1251 END IF
1252
1253 bs_env%Sigma_x_exists = .true.
1254 DO i_spin = 1, n_spin
1255 WRITE (f_s_x, '(3A,I1,A)') trim(prefix), bs_env%Sigma_x_name, "_0", i_spin, ".matrix"
1256 INQUIRE (file=trim(f_s_x), exist=sigma_x_spin_exists)
1257 bs_env%Sigma_x_exists = bs_env%Sigma_x_exists .AND. sigma_x_spin_exists
1258 END DO
1259
1260 ! If any restart files are read, check if the SCF converged in 1 step.
1261 ! This is important because a re-iterated SCF can lead to spurious GW results
1262 IF (any(bs_env%read_chi(:)) &
1263 .OR. any(bs_env%Sigma_c_exists) &
1264 .OR. bs_env%all_W_exist &
1265 .OR. bs_env%Sigma_x_exists &
1266 ) THEN
1267
1268 IF (qs_env%scf_env%iter_count /= 1) THEN
1269 CALL cp_warn(__location__, "SCF needed more than 1 step, "// &
1270 "which might lead to spurious GW results when using GW restart files. ")
1271 END IF
1272 END IF
1273
1274 CALL timestop(handle)
1275
1276 END SUBROUTINE check_for_restart_files
1277
1278! **************************************************************************************************
1279!> \brief ...
1280!> \param qs_env ...
1281!> \param bs_env ...
1282! **************************************************************************************************
1283 SUBROUTINE set_parallelization_parameters(qs_env, bs_env)
1284 TYPE(qs_environment_type), POINTER :: qs_env
1285 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1286
1287 CHARACTER(LEN=*), PARAMETER :: routinen = 'set_parallelization_parameters'
1288
1289 INTEGER :: color_sub, dummy_1, dummy_2, handle, &
1290 num_pe, num_t_groups, u
1291 INTEGER(KIND=int_8) :: mem
1292 TYPE(mp_para_env_type), POINTER :: para_env
1293
1294 CALL timeset(routinen, handle)
1295
1296 CALL get_qs_env(qs_env, para_env=para_env)
1297
1298 num_pe = para_env%num_pe
1299 ! if not already set, use all processors for the group (for large-cell GW, performance
1300 ! seems to be best for a single group with all MPI processes per group)
1301 IF (bs_env%group_size_tensor < 0 .OR. bs_env%group_size_tensor > num_pe) &
1302 bs_env%group_size_tensor = num_pe
1303
1304 ! group_size_tensor must divide num_pe without rest; otherwise everything will be complicated
1305 IF (modulo(num_pe, bs_env%group_size_tensor) /= 0) THEN
1306 CALL find_good_group_size(num_pe, bs_env%group_size_tensor)
1307 END IF
1308
1309 ! para_env_tensor for tensor subgroups
1310 color_sub = para_env%mepos/bs_env%group_size_tensor
1311 bs_env%tensor_group_color = color_sub
1312
1313 ALLOCATE (bs_env%para_env_tensor)
1314 CALL bs_env%para_env_tensor%from_split(para_env, color_sub)
1315
1316 num_t_groups = para_env%num_pe/bs_env%group_size_tensor
1317 bs_env%num_tensor_groups = num_t_groups
1318
1319 CALL get_i_j_atoms(bs_env%atoms_i, bs_env%atoms_j, bs_env%n_atom_i, bs_env%n_atom_j, &
1320 color_sub, bs_env)
1321
1322 ALLOCATE (bs_env%atoms_i_t_group(2, num_t_groups))
1323 ALLOCATE (bs_env%atoms_j_t_group(2, num_t_groups))
1324 DO color_sub = 0, num_t_groups - 1
1325 CALL get_i_j_atoms(bs_env%atoms_i_t_group(1:2, color_sub + 1), &
1326 bs_env%atoms_j_t_group(1:2, color_sub + 1), &
1327 dummy_1, dummy_2, color_sub, bs_env)
1328 END DO
1329
1330 CALL m_memory(mem)
1331 CALL bs_env%para_env%max(mem)
1332
1333 u = bs_env%unit_nr
1334 IF (u > 0) THEN
1335 WRITE (u, '(T2,A,I47)') 'Group size for tensor operations', bs_env%group_size_tensor
1336 IF (bs_env%group_size_tensor > 1 .AND. bs_env%n_atom < 5) THEN
1337 WRITE (u, '(T2,A)') 'The requested group size is > 1 which can lead to bad performance.'
1338 WRITE (u, '(T2,A)') 'Using more memory per MPI process might improve performance.'
1339 WRITE (u, '(T2,A)') '(Also increase MEMORY_PER_PROC when using more memory per process.)'
1340 END IF
1341 END IF
1342
1343 CALL timestop(handle)
1344
1345 END SUBROUTINE set_parallelization_parameters
1346
1347! **************************************************************************************************
1348!> \brief ...
1349!> \param num_pe ...
1350!> \param group_size ...
1351! **************************************************************************************************
1352 SUBROUTINE find_good_group_size(num_pe, group_size)
1353
1354 INTEGER :: num_pe, group_size
1355
1356 CHARACTER(LEN=*), PARAMETER :: routinen = 'find_good_group_size'
1357
1358 INTEGER :: group_size_minus, group_size_orig, &
1359 group_size_plus, handle, i_diff
1360
1361 CALL timeset(routinen, handle)
1362
1363 group_size_orig = group_size
1364
1365 DO i_diff = 1, num_pe
1366
1367 group_size_minus = group_size - i_diff
1368
1369 IF (modulo(num_pe, group_size_minus) == 0 .AND. group_size_minus > 0) THEN
1370 group_size = group_size_minus
1371 EXIT
1372 END IF
1373
1374 group_size_plus = group_size + i_diff
1375
1376 IF (modulo(num_pe, group_size_plus) == 0 .AND. group_size_plus <= num_pe) THEN
1377 group_size = group_size_plus
1378 EXIT
1379 END IF
1380
1381 END DO
1382
1383 IF (group_size_orig == group_size) cpabort("Group size error")
1384
1385 CALL timestop(handle)
1386
1387 END SUBROUTINE find_good_group_size
1388
1389! **************************************************************************************************
1390!> \brief ...
1391!> \param atoms_i ...
1392!> \param atoms_j ...
1393!> \param n_atom_i ...
1394!> \param n_atom_j ...
1395!> \param color_sub ...
1396!> \param bs_env ...
1397! **************************************************************************************************
1398 SUBROUTINE get_i_j_atoms(atoms_i, atoms_j, n_atom_i, n_atom_j, color_sub, bs_env)
1399
1400 INTEGER, DIMENSION(2) :: atoms_i, atoms_j
1401 INTEGER :: n_atom_i, n_atom_j, color_sub
1402 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1403
1404 CHARACTER(LEN=*), PARAMETER :: routinen = 'get_i_j_atoms'
1405
1406 INTEGER :: handle, i_atoms_per_group, i_group, &
1407 ipcol, ipcol_loop, iprow, iprow_loop, &
1408 j_atoms_per_group, npcol, nprow
1409
1410 CALL timeset(routinen, handle)
1411
1412 ! create a square mesh of tensor groups for iatom and jatom; code from blacs_env_create
1413 CALL square_mesh(nprow, npcol, bs_env%num_tensor_groups)
1414
1415 i_group = 0
1416 DO ipcol_loop = 0, npcol - 1
1417 DO iprow_loop = 0, nprow - 1
1418 IF (i_group == color_sub) THEN
1419 iprow = iprow_loop
1420 ipcol = ipcol_loop
1421 END IF
1422 i_group = i_group + 1
1423 END DO
1424 END DO
1425
1426 IF (modulo(bs_env%n_atom, nprow) == 0) THEN
1427 i_atoms_per_group = bs_env%n_atom/nprow
1428 ELSE
1429 i_atoms_per_group = bs_env%n_atom/nprow + 1
1430 END IF
1431
1432 IF (modulo(bs_env%n_atom, npcol) == 0) THEN
1433 j_atoms_per_group = bs_env%n_atom/npcol
1434 ELSE
1435 j_atoms_per_group = bs_env%n_atom/npcol + 1
1436 END IF
1437
1438 atoms_i(1) = iprow*i_atoms_per_group + 1
1439 atoms_i(2) = min((iprow + 1)*i_atoms_per_group, bs_env%n_atom)
1440 n_atom_i = atoms_i(2) - atoms_i(1) + 1
1441
1442 atoms_j(1) = ipcol*j_atoms_per_group + 1
1443 atoms_j(2) = min((ipcol + 1)*j_atoms_per_group, bs_env%n_atom)
1444 n_atom_j = atoms_j(2) - atoms_j(1) + 1
1445
1446 CALL timestop(handle)
1447
1448 END SUBROUTINE get_i_j_atoms
1449
1450! **************************************************************************************************
1451!> \brief ...
1452!> \param nprow ...
1453!> \param npcol ...
1454!> \param nproc ...
1455! **************************************************************************************************
1456 SUBROUTINE square_mesh(nprow, npcol, nproc)
1457 INTEGER :: nprow, npcol, nproc
1458
1459 CHARACTER(LEN=*), PARAMETER :: routinen = 'square_mesh'
1460
1461 INTEGER :: gcd_max, handle, ipe, jpe
1462
1463 CALL timeset(routinen, handle)
1464
1465 gcd_max = -1
1466 DO ipe = 1, ceiling(sqrt(real(nproc, dp)))
1467 jpe = nproc/ipe
1468 IF (ipe*jpe /= nproc) cycle
1469 IF (gcd(ipe, jpe) >= gcd_max) THEN
1470 nprow = ipe
1471 npcol = jpe
1472 gcd_max = gcd(ipe, jpe)
1473 END IF
1474 END DO
1475
1476 CALL timestop(handle)
1477
1478 END SUBROUTINE square_mesh
1479
1480! **************************************************************************************************
1481!> \brief ...
1482!> \param bs_env ...
1483!> \param qs_env ...
1484! **************************************************************************************************
1485 SUBROUTINE set_heuristic_parameters(bs_env, qs_env)
1486 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1487 TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
1488
1489 CHARACTER(LEN=*), PARAMETER :: routinen = 'set_heuristic_parameters'
1490
1491 INTEGER :: handle, u
1492 LOGICAL :: do_bvk_cell
1493
1494 CALL timeset(routinen, handle)
1495
1496 ! for generating numerically stable minimax Fourier integration weights
1497 bs_env%num_points_per_magnitude = 200
1498
1499 IF (bs_env%input_regularization_minimax > -1.0e-12_dp) THEN
1500 bs_env%regularization_minimax = bs_env%input_regularization_minimax
1501 ELSE
1502 ! for periodic systems and for 20 minimax points, we use a regularized minimax mesh
1503 ! (from experience: regularized minimax meshes converges faster for periodic systems
1504 ! and for 20 pts)
1505 IF (sum(bs_env%periodic) /= 0 .OR. bs_env%num_time_freq_points >= 20) THEN
1506 bs_env%regularization_minimax = 1.0e-6_dp
1507 ELSE
1508 bs_env%regularization_minimax = 0.0_dp
1509 END IF
1510 END IF
1511
1512 bs_env%stabilize_exp = 70.0_dp
1513 bs_env%eps_atom_grid_2d_mat = 1.0e-50_dp
1514
1515 ! use a 16-parameter Padé fit
1516 bs_env%nparam_pade = 16
1517
1518 ! resolution of the identity with the truncated Coulomb metric, cutoff radius 3 Angström
1519 bs_env%ri_metric%potential_type = do_potential_truncated
1520 bs_env%ri_metric%omega = 0.0_dp
1521 ! cutoff radius is specified in the input
1522 bs_env%ri_metric%filename = "t_c_g.dat"
1523
1524 bs_env%eps_eigval_mat_RI = 0.0_dp
1525
1526 IF (bs_env%input_regularization_RI > -1.0e-12_dp) THEN
1527 bs_env%regularization_RI = bs_env%input_regularization_RI
1528 ELSE
1529 ! default case:
1530
1531 ! 1. for periodic systems, we use the regularized resolution of the identity per default
1532 bs_env%regularization_RI = 1.0e-2_dp
1533
1534 ! 2. for molecules, no regularization is necessary
1535 IF (sum(bs_env%periodic) == 0) bs_env%regularization_RI = 0.0_dp
1536
1537 END IF
1538
1539 ! truncated Coulomb operator for exchange self-energy
1540 ! (see details in Guidon, VandeVondele, Hutter, JCTC 5, 3010 (2009) and references therein)
1541 do_bvk_cell = bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp
1542 CALL trunc_coulomb_for_exchange(qs_env, bs_env%trunc_coulomb, &
1543 rel_cutoff_trunc_coulomb_ri_x=0.5_dp, &
1544 cell_grid=bs_env%cell_grid_scf_desymm, &
1545 do_bvk_cell=do_bvk_cell)
1546
1547 ! for small-cell GW, we need more cells than normally used by the filter bs_env%eps_filter
1548 ! (in particular for computing the self-energy because of higher number of cells needed)
1549 bs_env%heuristic_filter_factor = 1.0e-4
1550
1551 u = bs_env%unit_nr
1552 IF (u > 0) THEN
1553 WRITE (u, fmt="(T2,2A,F21.1,A)") "Cutoff radius for the truncated Coulomb ", &
1554 Σ"operator in ^x:", bs_env%trunc_coulomb%cutoff_radius*angstrom, Å" "
1555 WRITE (u, fmt="(T2,2A,F15.1,A)") "Cutoff radius for the truncated Coulomb ", &
1556 "operator in RI metric:", bs_env%ri_metric%cutoff_radius*angstrom, Å" "
1557 WRITE (u, fmt="(T2,A,ES48.1)") "Regularization parameter of RI ", bs_env%regularization_RI
1558 WRITE (u, fmt="(T2,A,ES38.1)") "Regularization parameter of minimax grids", &
1559 bs_env%regularization_minimax
1560 WRITE (u, fmt="(T2,A,I53)") "Lattice sum size for V(k):", bs_env%size_lattice_sum_V
1561 END IF
1562
1563 CALL timestop(handle)
1564
1565 END SUBROUTINE set_heuristic_parameters
1566
1567! **************************************************************************************************
1568!> \brief ...
1569!> \param bs_env ...
1570! **************************************************************************************************
1571 SUBROUTINE print_header_and_input_parameters(bs_env)
1572
1573 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1574
1575 CHARACTER(LEN=*), PARAMETER :: routinen = 'print_header_and_input_parameters'
1576
1577 INTEGER :: handle, u
1578
1579 CALL timeset(routinen, handle)
1580
1581 u = bs_env%unit_nr
1582
1583 IF (u > 0) THEN
1584 WRITE (u, '(T2,A)') ' '
1585 WRITE (u, '(T2,A)') repeat('-', 79)
1586 WRITE (u, '(T2,A,A78)') '-', '-'
1587 WRITE (u, '(T2,A,A46,A32)') '-', 'GW CALCULATION', '-'
1588 WRITE (u, '(T2,A,A78)') '-', '-'
1589 WRITE (u, '(T2,A)') repeat('-', 79)
1590 WRITE (u, '(T2,A)') ' '
1591 WRITE (u, '(T2,A,I45)') 'Input: Number of time/freq. points', bs_env%num_time_freq_points
1592 WRITE (u, "(T2,A,F44.1,A)") ωΣω'Input: _max for fitting (i) (eV)', bs_env%freq_max_fit*evolt
1593 WRITE (u, '(T2,A,ES27.1)') 'Input: Filter threshold for sparse tensor operations', &
1594 bs_env%eps_filter
1595 WRITE (u, "(T2,A,L55)") 'Input: Apply Hedin shift', bs_env%do_hedin_shift
1596 END IF
1597
1598 CALL timestop(handle)
1599
1600 END SUBROUTINE print_header_and_input_parameters
1601
1602! **************************************************************************************************
1603!> \brief ...
1604!> \param qs_env ...
1605!> \param bs_env ...
1606! **************************************************************************************************
1607 SUBROUTINE compute_v_xc(qs_env, bs_env)
1608 TYPE(qs_environment_type), POINTER :: qs_env
1609 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1610
1611 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_V_xc'
1612
1613 INTEGER :: handle, img, ispin, myfun, nimages
1614 LOGICAL :: hf_present
1615 REAL(kind=dp) :: energy_ex, energy_exc, energy_total, &
1616 myfraction
1617 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_ks_without_v_xc
1618 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks_kp
1619 TYPE(dft_control_type), POINTER :: dft_control
1620 TYPE(qs_energy_type), POINTER :: energy
1621 TYPE(section_vals_type), POINTER :: hf_section, input, xc_section
1622
1623 CALL timeset(routinen, handle)
1624
1625 CALL get_qs_env(qs_env, input=input, energy=energy, dft_control=dft_control)
1626
1627 ! previously, dft_control%nimages set to # neighbor cells, revert for Γ-only KS matrix
1628 nimages = dft_control%nimages
1629 dft_control%nimages = bs_env%nimages_scf
1630
1631 ! we need to reset XC functional, therefore, get XC input
1632 xc_section => section_vals_get_subs_vals(input, "DFT%XC")
1633 CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=myfun)
1634 CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=xc_none)
1635 ! IF (ASSOCIATED(section_vals_get_subs_vals(xc_section, "HF", can_return_null=.TRUE.))) THEN
1636 hf_section => section_vals_get_subs_vals(input, "DFT%XC%HF", can_return_null=.true.)
1637 hf_present = .false.
1638 IF (ASSOCIATED(hf_section)) THEN
1639 CALL section_vals_get(hf_section, explicit=hf_present)
1640 END IF
1641 IF (hf_present) THEN
1642 ! Special case for handling hfx
1643 CALL section_vals_val_get(xc_section, "HF%FRACTION", r_val=myfraction)
1644 CALL section_vals_val_set(xc_section, "HF%FRACTION", r_val=0.0_dp)
1645 END IF
1646
1647 ! save the energy before the energy gets updated
1648 energy_total = energy%total
1649 energy_exc = energy%exc
1650 energy_ex = energy%ex
1651
1652 SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1653 CASE (large_cell_gamma)
1654
1655 NULLIFY (mat_ks_without_v_xc)
1656 CALL dbcsr_allocate_matrix_set(mat_ks_without_v_xc, bs_env%n_spin)
1657
1658 DO ispin = 1, bs_env%n_spin
1659 ALLOCATE (mat_ks_without_v_xc(ispin)%matrix)
1660 IF (hf_present) THEN
1661 CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix, &
1662 matrix_type=dbcsr_type_symmetric)
1663 ELSE
1664 CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
1665 END IF
1666 END DO
1667
1668 ! calculate KS-matrix without XC
1669 CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.false., just_energy=.false., &
1670 ext_ks_matrix=mat_ks_without_v_xc)
1671
1672 DO ispin = 1, bs_env%n_spin
1673 ! transfer dbcsr matrix to fm
1674 CALL cp_fm_create(bs_env%fm_V_xc_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
1675 CALL copy_dbcsr_to_fm(mat_ks_without_v_xc(ispin)%matrix, bs_env%fm_V_xc_Gamma(ispin))
1676
1677 ! v_xc = h_ks - h_ks(v_xc = 0)
1678 CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_Gamma(ispin), &
1679 beta=1.0_dp, matrix_b=bs_env%fm_ks_Gamma(ispin))
1680 END DO
1681
1682 CALL dbcsr_deallocate_matrix_set(mat_ks_without_v_xc)
1683
1684 CASE (small_cell_full_kp)
1685
1686 ! calculate KS-matrix without XC
1687 CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.false., just_energy=.false.)
1688 CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_kp)
1689
1690 ALLOCATE (bs_env%fm_V_xc_R(dft_control%nimages, bs_env%n_spin))
1691 DO ispin = 1, bs_env%n_spin
1692 DO img = 1, dft_control%nimages
1693 ! safe fm_V_xc_R in fm_matrix because saving in dbcsr matrix caused trouble...
1694 CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1695 CALL cp_fm_create(bs_env%fm_V_xc_R(img, ispin), bs_env%fm_work_mo(1)%matrix_struct, &
1696 set_zero=.true.)
1697 ! store h_ks(v_xc = 0) in fm_V_xc_R
1698 CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1699 beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1700 END DO
1701 END DO
1702
1703 END SELECT
1704
1705 ! set back the energy
1706 energy%total = energy_total
1707 energy%exc = energy_exc
1708 energy%ex = energy_ex
1709
1710 ! set back nimages
1711 dft_control%nimages = nimages
1712
1713 ! set the DFT functional and HF fraction back
1714 CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
1715 i_val=myfun)
1716 IF (hf_present) THEN
1717 CALL section_vals_val_set(xc_section, "HF%FRACTION", &
1718 r_val=myfraction)
1719 END IF
1720
1721 IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
1722 ! calculate KS-matrix again with XC
1723 CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.false., just_energy=.false.)
1724 DO ispin = 1, bs_env%n_spin
1725 DO img = 1, dft_control%nimages
1726 ! store h_ks in fm_work_mo
1727 CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1728 ! v_xc = h_ks - h_ks(v_xc = 0)
1729 CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1730 beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1731 END DO
1732 END DO
1733 END IF
1734
1735 CALL timestop(handle)
1736
1737 END SUBROUTINE compute_v_xc
1738
1739! **************************************************************************************************
1740!> \brief ...
1741!> \param bs_env ...
1742! **************************************************************************************************
1743 SUBROUTINE setup_time_and_frequency_minimax_grid(bs_env)
1744 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1745
1746 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_time_and_frequency_minimax_grid'
1747
1748 INTEGER :: handle, homo, i_w, ierr, ispin, j_w, &
1749 n_mo, num_time_freq_points, u
1750 REAL(kind=dp) :: e_max, e_max_ispin, e_min, e_min_ispin, &
1751 e_range, max_error_min
1752 REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: points_and_weights
1753
1754 CALL timeset(routinen, handle)
1755
1756 n_mo = bs_env%n_ao
1757 num_time_freq_points = bs_env%num_time_freq_points
1758
1759 ALLOCATE (bs_env%imag_freq_points(num_time_freq_points))
1760 ALLOCATE (bs_env%imag_time_points(num_time_freq_points))
1761 ALLOCATE (bs_env%imag_time_weights_freq_zero(num_time_freq_points))
1762 ALLOCATE (bs_env%weights_cos_t_to_w(num_time_freq_points, num_time_freq_points))
1763 ALLOCATE (bs_env%weights_cos_w_to_t(num_time_freq_points, num_time_freq_points))
1764 ALLOCATE (bs_env%weights_sin_t_to_w(num_time_freq_points, num_time_freq_points))
1765
1766 ! minimum and maximum difference between eigenvalues of unoccupied and an occupied MOs
1767 e_min = 1000.0_dp
1768 e_max = -1000.0_dp
1769 DO ispin = 1, bs_env%n_spin
1770 homo = bs_env%n_occ(ispin)
1771 SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1772 CASE (large_cell_gamma)
1773 e_min_ispin = bs_env%eigenval_scf_Gamma(homo + 1, ispin) - &
1774 bs_env%eigenval_scf_Gamma(homo, ispin)
1775 e_max_ispin = bs_env%eigenval_scf_Gamma(n_mo, ispin) - &
1776 bs_env%eigenval_scf_Gamma(1, ispin)
1777 CASE (small_cell_full_kp)
1778 e_min_ispin = minval(bs_env%eigenval_scf(homo + 1, :, ispin)) - &
1779 maxval(bs_env%eigenval_scf(homo, :, ispin))
1780 e_max_ispin = maxval(bs_env%eigenval_scf(n_mo, :, ispin)) - &
1781 minval(bs_env%eigenval_scf(1, :, ispin))
1782 END SELECT
1783 e_min = min(e_min, e_min_ispin)
1784 e_max = max(e_max, e_max_ispin)
1785 END DO
1786
1787 e_range = e_max/e_min
1788
1789 ALLOCATE (points_and_weights(2*num_time_freq_points))
1790
1791 ! frequency points
1792 IF (num_time_freq_points <= 20) THEN
1793 CALL get_rpa_minimax_coeff(num_time_freq_points, e_range, points_and_weights, ierr, .false.)
1794 ELSE
1795 CALL get_rpa_minimax_coeff_larger_grid(num_time_freq_points, e_range, points_and_weights)
1796 END IF
1797
1798 ! one needs to scale the minimax grids, see Azizi, Wilhelm, Golze, Panades-Barrueta,
1799 ! Giantomassi, Rinke, Draxl, Gonze et al., 2 publications
1800 bs_env%imag_freq_points(:) = points_and_weights(1:num_time_freq_points)*e_min
1801
1802 ! determine number of fit points in the interval [0,ω_max] for virt, or [-ω_max,0] for occ
1803 bs_env%num_freq_points_fit = 0
1804 DO i_w = 1, num_time_freq_points
1805 IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1806 bs_env%num_freq_points_fit = bs_env%num_freq_points_fit + 1
1807 END IF
1808 END DO
1809
1810 ! iω values for the analytic continuation Σ^c_n(iω,k) -> Σ^c_n(ϵ,k)
1811 ALLOCATE (bs_env%imag_freq_points_fit(bs_env%num_freq_points_fit))
1812 j_w = 0
1813 DO i_w = 1, num_time_freq_points
1814 IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1815 j_w = j_w + 1
1816 bs_env%imag_freq_points_fit(j_w) = bs_env%imag_freq_points(i_w)
1817 END IF
1818 END DO
1819
1820 ! reset the number of Padé parameters if smaller than the number of
1821 ! imaginary-frequency points for the fit
1822 IF (bs_env%num_freq_points_fit < bs_env%nparam_pade) THEN
1823 bs_env%nparam_pade = bs_env%num_freq_points_fit
1824 END IF
1825
1826 ! time points
1827 IF (num_time_freq_points <= 20) THEN
1828 CALL get_exp_minimax_coeff(num_time_freq_points, e_range, points_and_weights)
1829 ELSE
1830 CALL get_exp_minimax_coeff_gw(num_time_freq_points, e_range, points_and_weights)
1831 END IF
1832
1833 bs_env%imag_time_points(:) = points_and_weights(1:num_time_freq_points)/(2.0_dp*e_min)
1834 bs_env%imag_time_weights_freq_zero(:) = points_and_weights(num_time_freq_points + 1:)/(e_min)
1835
1836 DEALLOCATE (points_and_weights)
1837
1838 u = bs_env%unit_nr
1839 IF (u > 0) THEN
1840 WRITE (u, '(T2,A)') ''
1841 WRITE (u, '(T2,A,F55.2)') 'SCF direct band gap (eV)', e_min*evolt
1842 WRITE (u, '(T2,A,F53.2)') 'Max. SCF eigval diff. (eV)', e_max*evolt
1843 WRITE (u, '(T2,A,F55.2)') 'E-Range for minimax grid', e_range
1844 WRITE (u, '(T2,A,I27)') é'Number of Pad parameters for analytic continuation:', &
1845 bs_env%nparam_pade
1846 WRITE (u, '(T2,A)') ''
1847 END IF
1848
1849 ! in minimax grids, Fourier transforms t -> w and w -> t are split using
1850 ! e^(iwt) = cos(wt) + i sin(wt); we thus calculate weights for trafos with a cos and
1851 ! sine prefactor; details in Azizi, Wilhelm, Golze, Giantomassi, Panades-Barrueta,
1852 ! Rinke, Draxl, Gonze et al., 2 publications
1853
1854 ! cosine transform weights imaginary time to imaginary frequency
1855 CALL get_l_sq_wghts_cos_tf_t_to_w(num_time_freq_points, &
1856 bs_env%imag_time_points, &
1857 bs_env%weights_cos_t_to_w, &
1858 bs_env%imag_freq_points, &
1859 e_min, e_max, max_error_min, &
1860 bs_env%num_points_per_magnitude, &
1861 bs_env%regularization_minimax)
1862
1863 ! cosine transform weights imaginary frequency to imaginary time
1864 CALL get_l_sq_wghts_cos_tf_w_to_t(num_time_freq_points, &
1865 bs_env%imag_time_points, &
1866 bs_env%weights_cos_w_to_t, &
1867 bs_env%imag_freq_points, &
1868 e_min, e_max, max_error_min, &
1869 bs_env%num_points_per_magnitude, &
1870 bs_env%regularization_minimax)
1871
1872 ! sine transform weights imaginary time to imaginary frequency
1873 CALL get_l_sq_wghts_sin_tf_t_to_w(num_time_freq_points, &
1874 bs_env%imag_time_points, &
1875 bs_env%weights_sin_t_to_w, &
1876 bs_env%imag_freq_points, &
1877 e_min, e_max, max_error_min, &
1878 bs_env%num_points_per_magnitude, &
1879 bs_env%regularization_minimax)
1880
1881 CALL timestop(handle)
1882
1883 END SUBROUTINE setup_time_and_frequency_minimax_grid
1884
1885! **************************************************************************************************
1886!> \brief ...
1887!> \param qs_env ...
1888!> \param bs_env ...
1889! **************************************************************************************************
1890 SUBROUTINE setup_cells_3c(qs_env, bs_env)
1891
1892 TYPE(qs_environment_type), POINTER :: qs_env
1893 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1894
1895 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_cells_3c'
1896
1897 INTEGER :: atom_i, atom_j, atom_k, block_count, handle, i, i_cell_x, i_cell_x_max, &
1898 i_cell_x_min, i_size, ikind, img, j, j_cell, j_cell_max, j_cell_y, j_cell_y_max, &
1899 j_cell_y_min, j_size, k_cell, k_cell_max, k_cell_z, k_cell_z_max, k_cell_z_min, k_size, &
1900 nimage_pairs_3c, nimages_3c, nimages_3c_max, nkind, u
1901 INTEGER(KIND=int_8) :: mem_occ_per_proc
1902 INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of, n_other_3c_images_max
1903 INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_3c_max, nblocks_3c_max
1904 INTEGER, DIMENSION(3) :: cell_index, n_max
1905 REAL(kind=dp) :: avail_mem_per_proc_gb, cell_dist, cell_radius_3c, dij, dik, djk, eps, &
1906 exp_min_ao, exp_min_ri, frobenius_norm, mem_3c_gb, mem_occ_per_proc_gb, radius_ao, &
1907 radius_ao_product, radius_ri
1908 REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: exp_ao_kind, exp_ri_kind, &
1909 radius_ao_kind, &
1910 radius_ao_product_kind, radius_ri_kind
1911 REAL(kind=dp), ALLOCATABLE, DIMENSION(:, :, :) :: int_3c
1912 REAL(kind=dp), DIMENSION(3) :: rij, rik, rjk, vec_cell_j, vec_cell_k
1913 REAL(kind=dp), DIMENSION(:, :), POINTER :: exp_ao, exp_ri
1914 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1915 TYPE(cell_type), POINTER :: cell
1916 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1917
1918 CALL timeset(routinen, handle)
1919
1920 CALL get_qs_env(qs_env, nkind=nkind, atomic_kind_set=atomic_kind_set, particle_set=particle_set, cell=cell)
1921
1922 ALLOCATE (exp_ao_kind(nkind), exp_ri_kind(nkind), radius_ao_kind(nkind), &
1923 radius_ao_product_kind(nkind), radius_ri_kind(nkind))
1924
1925 exp_min_ri = 10.0_dp
1926 exp_min_ao = 10.0_dp
1927 exp_ri_kind = 10.0_dp
1928 exp_ao_kind = 10.0_dp
1929
1930 eps = bs_env%eps_filter*bs_env%heuristic_filter_factor
1931
1932 DO ikind = 1, nkind
1933
1934 CALL get_gto_basis_set(bs_env%basis_set_RI(ikind)%gto_basis_set, zet=exp_ri)
1935 CALL get_gto_basis_set(bs_env%basis_set_ao(ikind)%gto_basis_set, zet=exp_ao)
1936
1937 ! we need to remove all exponents lower than a lower bound, e.g. 1E-3, because
1938 ! for contracted basis sets, there might be exponents = 0 in zet
1939 DO i = 1, SIZE(exp_ri, 1)
1940 DO j = 1, SIZE(exp_ri, 2)
1941 IF (exp_ri(i, j) < exp_min_ri .AND. exp_ri(i, j) > 1e-3_dp) exp_min_ri = exp_ri(i, j)
1942 IF (exp_ri(i, j) < exp_ri_kind(ikind) .AND. exp_ri(i, j) > 1e-3_dp) &
1943 exp_ri_kind(ikind) = exp_ri(i, j)
1944 END DO
1945 END DO
1946 DO i = 1, SIZE(exp_ao, 1)
1947 DO j = 1, SIZE(exp_ao, 2)
1948 IF (exp_ao(i, j) < exp_min_ao .AND. exp_ao(i, j) > 1e-3_dp) exp_min_ao = exp_ao(i, j)
1949 IF (exp_ao(i, j) < exp_ao_kind(ikind) .AND. exp_ao(i, j) > 1e-3_dp) &
1950 exp_ao_kind(ikind) = exp_ao(i, j)
1951 END DO
1952 END DO
1953 radius_ao_kind(ikind) = sqrt(-log(eps)/exp_ao_kind(ikind))
1954 radius_ao_product_kind(ikind) = sqrt(-log(eps)/(2.0_dp*exp_ao_kind(ikind)))
1955 radius_ri_kind(ikind) = sqrt(-log(eps)/exp_ri_kind(ikind))
1956 END DO
1957
1958 radius_ao = sqrt(-log(eps)/exp_min_ao)
1959 radius_ao_product = sqrt(-log(eps)/(2.0_dp*exp_min_ao))
1960 radius_ri = sqrt(-log(eps)/exp_min_ri)
1961
1962 CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, kind_of=kind_of)
1963
1964 ! For a 3c integral (μR υS | P0) we have that cell R and cell S need to be within radius_3c
1965 cell_radius_3c = radius_ao_product + radius_ri + bs_env%ri_metric%cutoff_radius
1966
1967 n_max(1:3) = bs_env%periodic(1:3)*30
1968
1969 nimages_3c_max = 0
1970
1971 i_cell_x_min = 0
1972 i_cell_x_max = 0
1973 j_cell_y_min = 0
1974 j_cell_y_max = 0
1975 k_cell_z_min = 0
1976 k_cell_z_max = 0
1977
1978 DO i_cell_x = -n_max(1), n_max(1)
1979 DO j_cell_y = -n_max(2), n_max(2)
1980 DO k_cell_z = -n_max(3), n_max(3)
1981
1982 cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
1983
1984 CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
1985
1986 IF (cell_dist < cell_radius_3c) THEN
1987 nimages_3c_max = nimages_3c_max + 1
1988 i_cell_x_min = min(i_cell_x_min, i_cell_x)
1989 i_cell_x_max = max(i_cell_x_max, i_cell_x)
1990 j_cell_y_min = min(j_cell_y_min, j_cell_y)
1991 j_cell_y_max = max(j_cell_y_max, j_cell_y)
1992 k_cell_z_min = min(k_cell_z_min, k_cell_z)
1993 k_cell_z_max = max(k_cell_z_max, k_cell_z)
1994 END IF
1995
1996 END DO
1997 END DO
1998 END DO
1999
2000 ! get index_to_cell_3c_max for the maximum possible cell range;
2001 ! compute 3c integrals later in this routine and check really which cell is needed
2002 ALLOCATE (index_to_cell_3c_max(3, nimages_3c_max))
2003
2004 img = 0
2005 DO i_cell_x = -n_max(1), n_max(1)
2006 DO j_cell_y = -n_max(2), n_max(2)
2007 DO k_cell_z = -n_max(3), n_max(3)
2008
2009 cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
2010
2011 CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
2012
2013 IF (cell_dist < cell_radius_3c) THEN
2014 img = img + 1
2015 index_to_cell_3c_max(1:3, img) = cell_index(1:3)
2016 END IF
2017
2018 END DO
2019 END DO
2020 END DO
2021
2022 ! get pairs of R and S which have non-zero 3c integral (μR υS | P0)
2023 ALLOCATE (nblocks_3c_max(nimages_3c_max, nimages_3c_max))
2024 nblocks_3c_max(:, :) = 0
2025
2026 block_count = 0
2027 DO j_cell = 1, nimages_3c_max
2028 DO k_cell = 1, nimages_3c_max
2029
2030 DO atom_j = 1, bs_env%n_atom
2031 DO atom_k = 1, bs_env%n_atom
2032 DO atom_i = 1, bs_env%n_atom
2033
2034 block_count = block_count + 1
2035 IF (modulo(block_count, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) cycle
2036
2037 CALL scaled_to_real(vec_cell_j, real(index_to_cell_3c_max(1:3, j_cell), kind=dp), cell)
2038 CALL scaled_to_real(vec_cell_k, real(index_to_cell_3c_max(1:3, k_cell), kind=dp), cell)
2039
2040 rij = pbc(particle_set(atom_j)%r(:), cell) - pbc(particle_set(atom_i)%r(:), cell) + vec_cell_j(:)
2041 rjk = pbc(particle_set(atom_k)%r(:), cell) - pbc(particle_set(atom_j)%r(:), cell) &
2042 + vec_cell_k(:) - vec_cell_j(:)
2043 rik(:) = rij(:) + rjk(:)
2044 dij = norm2(rij)
2045 dik = norm2(rik)
2046 djk = norm2(rjk)
2047 IF (djk > radius_ao_kind(kind_of(atom_j)) + radius_ao_kind(kind_of(atom_k))) cycle
2048 IF (dij > radius_ao_kind(kind_of(atom_j)) + radius_ri_kind(kind_of(atom_i)) &
2049 + bs_env%ri_metric%cutoff_radius) cycle
2050 IF (dik > radius_ri_kind(kind_of(atom_i)) + radius_ao_kind(kind_of(atom_k)) &
2051 + bs_env%ri_metric%cutoff_radius) cycle
2052
2053 j_size = bs_env%i_ao_end_from_atom(atom_j) - bs_env%i_ao_start_from_atom(atom_j) + 1
2054 k_size = bs_env%i_ao_end_from_atom(atom_k) - bs_env%i_ao_start_from_atom(atom_k) + 1
2055 i_size = bs_env%i_RI_end_from_atom(atom_i) - bs_env%i_RI_start_from_atom(atom_i) + 1
2056
2057 ALLOCATE (int_3c(j_size, k_size, i_size))
2058
2059 ! compute 3-c int. ( μ(atom j) R , ν (atom k) S | P (atom i) 0 )
2060 ! ("|": truncated Coulomb operator), inside build_3c_integrals: (j k | i)
2061 CALL build_3c_integral_block(int_3c, qs_env, bs_env%ri_metric, &
2062 basis_j=bs_env%basis_set_AO, &
2063 basis_k=bs_env%basis_set_AO, &
2064 basis_i=bs_env%basis_set_RI, &
2065 cell_j=index_to_cell_3c_max(1:3, j_cell), &
2066 cell_k=index_to_cell_3c_max(1:3, k_cell), &
2067 atom_k=atom_k, atom_j=atom_j, atom_i=atom_i)
2068
2069 frobenius_norm = sqrt(sum(int_3c(:, :, :)**2))
2070
2071 DEALLOCATE (int_3c)
2072
2073 ! we use a higher threshold here to safe memory when storing the 3c integrals
2074 ! in every tensor group
2075 IF (frobenius_norm > eps) THEN
2076 nblocks_3c_max(j_cell, k_cell) = nblocks_3c_max(j_cell, k_cell) + 1
2077 END IF
2078
2079 END DO
2080 END DO
2081 END DO
2082
2083 END DO
2084 END DO
2085
2086 CALL bs_env%para_env%sum(nblocks_3c_max)
2087
2088 ALLOCATE (n_other_3c_images_max(nimages_3c_max))
2089 n_other_3c_images_max(:) = 0
2090
2091 nimages_3c = 0
2092 nimage_pairs_3c = 0
2093
2094 DO j_cell = 1, nimages_3c_max
2095 DO k_cell = 1, nimages_3c_max
2096 IF (nblocks_3c_max(j_cell, k_cell) > 0) THEN
2097 n_other_3c_images_max(j_cell) = n_other_3c_images_max(j_cell) + 1
2098 nimage_pairs_3c = nimage_pairs_3c + 1
2099 END IF
2100 END DO
2101
2102 IF (n_other_3c_images_max(j_cell) > 0) nimages_3c = nimages_3c + 1
2103
2104 END DO
2105
2106 bs_env%nimages_3c = nimages_3c
2107 ALLOCATE (bs_env%index_to_cell_3c(3, nimages_3c))
2108 ALLOCATE (bs_env%cell_to_index_3c(i_cell_x_min:i_cell_x_max, &
2109 j_cell_y_min:j_cell_y_max, &
2110 k_cell_z_min:k_cell_z_max))
2111 bs_env%cell_to_index_3c(:, :, :) = -1
2112
2113 ALLOCATE (bs_env%nblocks_3c(nimages_3c, nimages_3c))
2114 bs_env%nblocks_3c(nimages_3c, nimages_3c) = 0
2115
2116 j_cell = 0
2117 DO j_cell_max = 1, nimages_3c_max
2118 IF (n_other_3c_images_max(j_cell_max) == 0) cycle
2119 j_cell = j_cell + 1
2120 cell_index(1:3) = index_to_cell_3c_max(1:3, j_cell_max)
2121 bs_env%index_to_cell_3c(1:3, j_cell) = cell_index(1:3)
2122 bs_env%cell_to_index_3c(cell_index(1), cell_index(2), cell_index(3)) = j_cell
2123
2124 k_cell = 0
2125 DO k_cell_max = 1, nimages_3c_max
2126 IF (n_other_3c_images_max(k_cell_max) == 0) cycle
2127 k_cell = k_cell + 1
2128
2129 bs_env%nblocks_3c(j_cell, k_cell) = nblocks_3c_max(j_cell_max, k_cell_max)
2130 END DO
2131
2132 END DO
2133
2134 ! we use: 8*10^-9 GB / double precision number
2135 mem_3c_gb = real(bs_env%n_RI, kind=dp)*real(bs_env%n_ao, kind=dp)**2 &
2136 *real(nimage_pairs_3c, kind=dp)*8e-9_dp
2137
2138 CALL m_memory(mem_occ_per_proc)
2139 CALL bs_env%para_env%max(mem_occ_per_proc)
2140
2141 mem_occ_per_proc_gb = real(mem_occ_per_proc, kind=dp)/1.0e9_dp
2142
2143 ! number of processors per group that entirely stores the 3c integrals and does tensor ops
2144 avail_mem_per_proc_gb = bs_env%input_memory_per_proc_GB - mem_occ_per_proc_gb
2145
2146 ! careful: downconvering real to integer, 1.9 -> 1; thus add 1.0 for upconversion, 1.9 -> 2
2147 bs_env%group_size_tensor = max(int(mem_3c_gb/avail_mem_per_proc_gb + 1.0_dp), 1)
2148
2149 u = bs_env%unit_nr
2150
2151 IF (u > 0) THEN
2152 WRITE (u, fmt="(T2,A,F52.1,A)") "Radius of atomic orbitals", radius_ao*angstrom, Å" "
2153 WRITE (u, fmt="(T2,A,F55.1,A)") "Radius of RI functions", radius_ri*angstrom, Å" "
2154 WRITE (u, fmt="(T2,A,I47)") "Number of cells for 3c integrals", nimages_3c
2155 WRITE (u, fmt="(T2,A,I42)") "Number of cell pairs for 3c integrals", nimage_pairs_3c
2156 WRITE (u, '(T2,A)') ''
2157 WRITE (u, '(T2,A,F37.1,A)') 'Input: Available memory per MPI process', &
2158 bs_env%input_memory_per_proc_GB, ' GB'
2159 WRITE (u, '(T2,A,F35.1,A)') 'Used memory per MPI process before GW run', &
2160 mem_occ_per_proc_gb, ' GB'
2161 WRITE (u, '(T2,A,F44.1,A)') 'Memory of three-center integrals', mem_3c_gb, ' GB'
2162 END IF
2163
2164 CALL timestop(handle)
2165
2166 END SUBROUTINE setup_cells_3c
2167
2168! **************************************************************************************************
2169!> \brief ...
2170!> \param index_to_cell_1 ...
2171!> \param index_to_cell_2 ...
2172!> \param nimages_1 ...
2173!> \param nimages_2 ...
2174!> \param index_to_cell ...
2175!> \param cell_to_index ...
2176!> \param nimages ...
2177! **************************************************************************************************
2178 SUBROUTINE sum_two_r_grids(index_to_cell_1, index_to_cell_2, nimages_1, nimages_2, &
2179 index_to_cell, cell_to_index, nimages)
2180
2181 INTEGER, DIMENSION(:, :) :: index_to_cell_1, index_to_cell_2
2182 INTEGER :: nimages_1, nimages_2
2183 INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell
2184 INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index
2185 INTEGER :: nimages
2186
2187 CHARACTER(LEN=*), PARAMETER :: routinen = 'sum_two_R_grids'
2188
2189 INTEGER :: handle, i_dim, img_1, img_2, nimages_max
2190 INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_tmp
2191 INTEGER, DIMENSION(3) :: cell_1, cell_2, r, r_max, r_min
2192
2193 CALL timeset(routinen, handle)
2194
2195 DO i_dim = 1, 3
2196 r_min(i_dim) = minval(index_to_cell_1(i_dim, :)) + minval(index_to_cell_2(i_dim, :))
2197 r_max(i_dim) = maxval(index_to_cell_1(i_dim, :)) + maxval(index_to_cell_2(i_dim, :))
2198 END DO
2199
2200 nimages_max = (r_max(1) - r_min(1) + 1)*(r_max(2) - r_min(2) + 1)*(r_max(3) - r_min(3) + 1)
2201
2202 ALLOCATE (index_to_cell_tmp(3, nimages_max))
2203 index_to_cell_tmp(:, :) = -1
2204
2205 ALLOCATE (cell_to_index(r_min(1):r_max(1), r_min(2):r_max(2), r_min(3):r_max(3)))
2206 cell_to_index(:, :, :) = -1
2207
2208 nimages = 0
2209
2210 DO img_1 = 1, nimages_1
2211
2212 DO img_2 = 1, nimages_2
2213
2214 cell_1(1:3) = index_to_cell_1(1:3, img_1)
2215 cell_2(1:3) = index_to_cell_2(1:3, img_2)
2216
2217 r(1:3) = cell_1(1:3) + cell_2(1:3)
2218
2219 ! check whether we have found a new cell
2220 IF (cell_to_index(r(1), r(2), r(3)) == -1) THEN
2221
2222 nimages = nimages + 1
2223 cell_to_index(r(1), r(2), r(3)) = nimages
2224 index_to_cell_tmp(1:3, nimages) = r(1:3)
2225
2226 END IF
2227
2228 END DO
2229
2230 END DO
2231
2232 ALLOCATE (index_to_cell(3, nimages))
2233 index_to_cell(:, :) = index_to_cell_tmp(1:3, 1:nimages)
2234
2235 CALL timestop(handle)
2236
2237 END SUBROUTINE sum_two_r_grids
2238
2239! **************************************************************************************************
2240!> \brief ...
2241!> \param qs_env ...
2242!> \param bs_env ...
2243! **************************************************************************************************
2244 SUBROUTINE compute_3c_integrals(qs_env, bs_env)
2245
2246 TYPE(qs_environment_type), POINTER :: qs_env
2247 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2248
2249 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_3c_integrals'
2250
2251 INTEGER :: handle, j_cell, k_cell, nimages_3c
2252
2253 CALL timeset(routinen, handle)
2254
2255 nimages_3c = bs_env%nimages_3c
2256 ALLOCATE (bs_env%t_3c_int(nimages_3c, nimages_3c))
2257 DO j_cell = 1, nimages_3c
2258 DO k_cell = 1, nimages_3c
2259 CALL dbt_create(bs_env%t_RI_AO__AO, bs_env%t_3c_int(j_cell, k_cell))
2260 END DO
2261 END DO
2262
2263 CALL build_3c_integrals(bs_env%t_3c_int, &
2264 bs_env%eps_filter, &
2265 qs_env, &
2266 bs_env%nl_3c, &
2267 int_eps=bs_env%eps_filter*0.05_dp, &
2268 basis_i=bs_env%basis_set_RI, &
2269 basis_j=bs_env%basis_set_AO, &
2270 basis_k=bs_env%basis_set_AO, &
2271 potential_parameter=bs_env%ri_metric, &
2272 desymmetrize=.false., do_kpoints=.true., cell_sym=.true., &
2273 cell_to_index_ext=bs_env%cell_to_index_3c)
2274
2275 CALL bs_env%para_env%sync()
2276
2277 CALL timestop(handle)
2278
2279 END SUBROUTINE compute_3c_integrals
2280
2281! **************************************************************************************************
2282!> \brief ...
2283!> \param cell_index ...
2284!> \param hmat ...
2285!> \param cell_dist ...
2286! **************************************************************************************************
2287 SUBROUTINE get_cell_dist(cell_index, hmat, cell_dist)
2288
2289 INTEGER, DIMENSION(3) :: cell_index
2290 REAL(kind=dp) :: hmat(3, 3), cell_dist
2291
2292 CHARACTER(LEN=*), PARAMETER :: routinen = 'get_cell_dist'
2293
2294 INTEGER :: handle, i_dim
2295 INTEGER, DIMENSION(3) :: cell_index_adj
2296 REAL(kind=dp) :: cell_dist_3(3)
2297
2298 CALL timeset(routinen, handle)
2299
2300 ! the distance of cells needs to be taken to adjacent neighbors, not
2301 ! between the center of the cells. We thus need to rescale the cell index
2302 DO i_dim = 1, 3
2303 IF (cell_index(i_dim) > 0) cell_index_adj(i_dim) = cell_index(i_dim) - 1
2304 IF (cell_index(i_dim) < 0) cell_index_adj(i_dim) = cell_index(i_dim) + 1
2305 IF (cell_index(i_dim) == 0) cell_index_adj(i_dim) = cell_index(i_dim)
2306 END DO
2307
2308 cell_dist_3(1:3) = matmul(hmat, real(cell_index_adj, kind=dp))
2309
2310 cell_dist = sqrt(abs(sum(cell_dist_3(1:3)**2)))
2311
2312 CALL timestop(handle)
2313
2314 END SUBROUTINE get_cell_dist
2315
2316! **************************************************************************************************
2317!> \brief ...
2318!> \param qs_env ...
2319!> \param bs_env ...
2320!> \param kpoints ...
2321!> \param do_print ...
2322! **************************************************************************************************
2323 SUBROUTINE setup_kpoints_scf_desymm(qs_env, bs_env, kpoints, do_print)
2324 TYPE(qs_environment_type), POINTER :: qs_env
2325 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2326 TYPE(kpoint_type), POINTER :: kpoints
2327
2328 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_kpoints_scf_desymm'
2329
2330 INTEGER :: handle, i_cell_x, i_dim, img, j_cell_y, &
2331 k_cell_z, nimages, nkp, u
2332 INTEGER, DIMENSION(3) :: cell_grid, cixd, nkp_grid
2333 TYPE(kpoint_type), POINTER :: kpoints_scf
2334
2335 LOGICAL:: do_print
2336
2337 CALL timeset(routinen, handle)
2338
2339 NULLIFY (kpoints)
2340 CALL kpoint_create(kpoints)
2341
2342 CALL get_qs_env(qs_env=qs_env, kpoints=kpoints_scf)
2343
2344 nkp_grid(1:3) = kpoints_scf%nkp_grid(1:3)
2345 nkp = nkp_grid(1)*nkp_grid(2)*nkp_grid(3)
2346
2347 ! we need in periodic directions at least 2 k-points in the SCF
2348 DO i_dim = 1, 3
2349 IF (bs_env%periodic(i_dim) == 1) THEN
2350 cpassert(nkp_grid(i_dim) > 1)
2351 END IF
2352 END DO
2353
2354 kpoints%kp_scheme = "GENERAL"
2355 kpoints%nkp_grid(1:3) = nkp_grid(1:3)
2356 kpoints%nkp = nkp
2357 bs_env%nkp_scf_desymm = nkp
2358
2359 ALLOCATE (kpoints%xkp(1:3, nkp))
2360 CALL compute_xkp(kpoints%xkp, 1, nkp, nkp_grid)
2361
2362 ALLOCATE (kpoints%wkp(nkp))
2363 kpoints%wkp(:) = 1.0_dp/real(nkp, kind=dp)
2364
2365 ! for example 4x3x6 kpoint grid -> 3x3x5 cell grid because we need the same number of
2366 ! neighbor cells on both sides of the unit cell
2367 cell_grid(1:3) = nkp_grid(1:3) - modulo(nkp_grid(1:3) + 1, 2)
2368 ! cell index: for example for x: from -n_x/2 to +n_x/2, n_x: number of cells in x direction
2369 cixd(1:3) = cell_grid(1:3)/2
2370
2371 nimages = cell_grid(1)*cell_grid(2)*cell_grid(3)
2372
2373 bs_env%nimages_scf_desymm = nimages
2374
2375 ALLOCATE (kpoints%cell_to_index(-cixd(1):cixd(1), -cixd(2):cixd(2), -cixd(3):cixd(3)))
2376 ALLOCATE (kpoints%index_to_cell(3, nimages))
2377
2378 img = 0
2379 DO i_cell_x = -cixd(1), cixd(1)
2380 DO j_cell_y = -cixd(2), cixd(2)
2381 DO k_cell_z = -cixd(3), cixd(3)
2382 img = img + 1
2383 kpoints%cell_to_index(i_cell_x, j_cell_y, k_cell_z) = img
2384 kpoints%index_to_cell(1:3, img) = [i_cell_x, j_cell_y, k_cell_z]
2385 END DO
2386 END DO
2387 END DO
2388
2389 u = bs_env%unit_nr
2390 IF (u > 0 .AND. do_print) THEN
2391 WRITE (u, fmt="(T2,A,I49)") χΣ"Number of cells for G, , W, ", nimages
2392 END IF
2393
2394 CALL timestop(handle)
2395
2396 END SUBROUTINE setup_kpoints_scf_desymm
2397
2398! **************************************************************************************************
2399!> \brief ...
2400!> \param bs_env ...
2401! **************************************************************************************************
2402 SUBROUTINE setup_cells_delta_r(bs_env)
2403
2404 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2405
2406 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_cells_Delta_R'
2407
2408 INTEGER :: handle
2409
2410 CALL timeset(routinen, handle)
2411
2412 ! cell sums batch wise for fixed ΔR = S_1 - R_1; for example:
2413 ! Σ_λσ^R = sum_PR1νS1 M^G_λ0,νS1,PR1 M^W_σR,νS1,PR1
2414
2415 CALL sum_two_r_grids(bs_env%index_to_cell_3c, &
2416 bs_env%index_to_cell_3c, &
2417 bs_env%nimages_3c, bs_env%nimages_3c, &
2418 bs_env%index_to_cell_Delta_R, &
2419 bs_env%cell_to_index_Delta_R, &
2420 bs_env%nimages_Delta_R)
2421
2422 IF (bs_env%unit_nr > 0) THEN
2423 WRITE (bs_env%unit_nr, fmt="(T2,A,I61)") Δ"Number of cells R", bs_env%nimages_Delta_R
2424 END IF
2425
2426 CALL timestop(handle)
2427
2428 END SUBROUTINE setup_cells_delta_r
2429
2430! **************************************************************************************************
2431!> \brief ...
2432!> \param bs_env ...
2433! **************************************************************************************************
2434 SUBROUTINE setup_parallelization_delta_r(bs_env)
2435
2436 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2437
2438 CHARACTER(LEN=*), PARAMETER :: routinen = 'setup_parallelization_Delta_R'
2439
2440 INTEGER :: handle, i_cell_delta_r, i_task_local, &
2441 n_tasks_local
2442 INTEGER, ALLOCATABLE, DIMENSION(:) :: i_cell_delta_r_group, &
2443 n_tensor_ops_delta_r
2444
2445 CALL timeset(routinen, handle)
2446
2447 CALL compute_n_tensor_ops_delta_r(bs_env, n_tensor_ops_delta_r)
2448
2449 CALL compute_delta_r_dist(bs_env, n_tensor_ops_delta_r, i_cell_delta_r_group, n_tasks_local)
2450
2451 bs_env%n_tasks_Delta_R_local = n_tasks_local
2452
2453 ALLOCATE (bs_env%task_Delta_R(n_tasks_local))
2454
2455 i_task_local = 0
2456 DO i_cell_delta_r = 1, bs_env%nimages_Delta_R
2457
2458 IF (i_cell_delta_r_group(i_cell_delta_r) /= bs_env%tensor_group_color) cycle
2459
2460 i_task_local = i_task_local + 1
2461
2462 bs_env%task_Delta_R(i_task_local) = i_cell_delta_r
2463
2464 END DO
2465
2466 ALLOCATE (bs_env%skip_DR_chi(n_tasks_local))
2467 bs_env%skip_DR_chi(:) = .false.
2468 ALLOCATE (bs_env%skip_DR_Sigma(n_tasks_local))
2469 bs_env%skip_DR_Sigma(:) = .false.
2470
2471 CALL allocate_skip_3xr(bs_env%skip_DR_R12_S_Goccx3c_chi, bs_env)
2472 CALL allocate_skip_3xr(bs_env%skip_DR_R12_S_Gvirx3c_chi, bs_env)
2473 CALL allocate_skip_3xr(bs_env%skip_DR_R_R2_MxM_chi, bs_env)
2474
2475 CALL allocate_skip_3xr(bs_env%skip_DR_R1_S2_Gx3c_Sigma, bs_env)
2476 CALL allocate_skip_3xr(bs_env%skip_DR_R1_R_MxM_Sigma, bs_env)
2477
2478 CALL timestop(handle)
2479
2480 END SUBROUTINE setup_parallelization_delta_r
2481
2482! **************************************************************************************************
2483!> \brief ...
2484!> \param skip ...
2485!> \param bs_env ...
2486! **************************************************************************************************
2487 SUBROUTINE allocate_skip_3xr(skip, bs_env)
2488 LOGICAL, ALLOCATABLE, DIMENSION(:, :, :) :: skip
2489 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2490
2491 CHARACTER(LEN=*), PARAMETER :: routinen = 'allocate_skip_3xR'
2492
2493 INTEGER :: handle
2494
2495 CALL timeset(routinen, handle)
2496
2497 ALLOCATE (skip(bs_env%n_tasks_Delta_R_local, bs_env%nimages_3c, bs_env%nimages_scf_desymm))
2498 skip(:, :, :) = .false.
2499
2500 CALL timestop(handle)
2501
2502 END SUBROUTINE allocate_skip_3xr
2503
2504! **************************************************************************************************
2505!> \brief ...
2506!> \param bs_env ...
2507!> \param n_tensor_ops_Delta_R ...
2508!> \param i_cell_Delta_R_group ...
2509!> \param n_tasks_local ...
2510! **************************************************************************************************
2511 SUBROUTINE compute_delta_r_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
2512 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2513 INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_delta_r, &
2514 i_cell_delta_r_group
2515 INTEGER :: n_tasks_local
2516
2517 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_Delta_R_dist'
2518
2519 INTEGER :: handle, i_delta_r_max_op, i_group_min, &
2520 nimages_delta_r, u
2521 INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_delta_r_in_group
2522
2523 CALL timeset(routinen, handle)
2524
2525 nimages_delta_r = bs_env%nimages_Delta_R
2526
2527 u = bs_env%unit_nr
2528
2529 IF (u > 0 .AND. nimages_delta_r < bs_env%num_tensor_groups) THEN
2530 WRITE (u, fmt="(T2,A,I5,A,I5,A)") "There are only ", nimages_delta_r, &
2531 " tasks to work on but there are ", bs_env%num_tensor_groups, " groups."
2532 WRITE (u, fmt="(T2,A)") "Please reduce the number of MPI processes."
2533 WRITE (u, '(T2,A)') ''
2534 END IF
2535
2536 ALLOCATE (n_tensor_ops_delta_r_in_group(bs_env%num_tensor_groups))
2537 n_tensor_ops_delta_r_in_group(:) = 0
2538 ALLOCATE (i_cell_delta_r_group(nimages_delta_r))
2539 i_cell_delta_r_group(:) = -1
2540
2541 n_tasks_local = 0
2542
2543 DO WHILE (any(n_tensor_ops_delta_r(:) /= 0))
2544
2545 ! get largest element of n_tensor_ops_Delta_R
2546 i_delta_r_max_op = maxloc(n_tensor_ops_delta_r, 1)
2547
2548 ! distribute i_Delta_R_max_op to tensor group which has currently the smallest load
2549 i_group_min = minloc(n_tensor_ops_delta_r_in_group, 1)
2550
2551 ! the tensor groups are 0-index based; but i_group_min is 1-index based
2552 i_cell_delta_r_group(i_delta_r_max_op) = i_group_min - 1
2553 n_tensor_ops_delta_r_in_group(i_group_min) = n_tensor_ops_delta_r_in_group(i_group_min) + &
2554 n_tensor_ops_delta_r(i_delta_r_max_op)
2555
2556 ! remove i_Delta_R_max_op from n_tensor_ops_Delta_R
2557 n_tensor_ops_delta_r(i_delta_r_max_op) = 0
2558
2559 IF (bs_env%tensor_group_color == i_group_min - 1) n_tasks_local = n_tasks_local + 1
2560
2561 END DO
2562
2563 CALL timestop(handle)
2564
2565 END SUBROUTINE compute_delta_r_dist
2566
2567! **************************************************************************************************
2568!> \brief ...
2569!> \param bs_env ...
2570!> \param n_tensor_ops_Delta_R ...
2571! **************************************************************************************************
2572 SUBROUTINE compute_n_tensor_ops_delta_r(bs_env, n_tensor_ops_Delta_R)
2573 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2574 INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_delta_r
2575
2576 CHARACTER(LEN=*), PARAMETER :: routinen = 'compute_n_tensor_ops_Delta_R'
2577
2578 INTEGER :: handle, i_cell_delta_r, i_cell_r, i_cell_r1, i_cell_r1_minus_r, i_cell_r2, &
2579 i_cell_r2_m_r1, i_cell_s1, i_cell_s1_m_r1_p_r2, i_cell_s1_minus_r, i_cell_s2, &
2580 nimages_delta_r
2581 INTEGER, DIMENSION(3) :: cell_dr, cell_m_r1, cell_r, cell_r1, cell_r1_minus_r, cell_r2, &
2582 cell_r2_m_r1, cell_s1, cell_s1_m_r2_p_r1, cell_s1_minus_r, cell_s1_p_s2_m_r1, cell_s2
2583 LOGICAL :: cell_found
2584
2585 CALL timeset(routinen, handle)
2586
2587 nimages_delta_r = bs_env%nimages_Delta_R
2588
2589 ALLOCATE (n_tensor_ops_delta_r(nimages_delta_r))
2590 n_tensor_ops_delta_r(:) = 0
2591
2592 ! compute number of tensor operations for specific Delta_R
2593 DO i_cell_delta_r = 1, nimages_delta_r
2594
2595 IF (modulo(i_cell_delta_r, bs_env%num_tensor_groups) /= bs_env%tensor_group_color) cycle
2596
2597 DO i_cell_r1 = 1, bs_env%nimages_3c
2598
2599 cell_r1(1:3) = bs_env%index_to_cell_3c(1:3, i_cell_r1)
2600 cell_dr(1:3) = bs_env%index_to_cell_Delta_R(1:3, i_cell_delta_r)
2601
2602 ! S_1 = R_1 + ΔR (from ΔR = S_1 - R_1)
2603 CALL add_r(cell_r1, cell_dr, bs_env%index_to_cell_3c, cell_s1, &
2604 cell_found, bs_env%cell_to_index_3c, i_cell_s1)
2605 IF (.NOT. cell_found) cycle
2606
2607 DO i_cell_r2 = 1, bs_env%nimages_scf_desymm
2608
2609 cell_r2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_r2)
2610
2611 ! R_2 - R_1
2612 CALL add_r(cell_r2, -cell_r1, bs_env%index_to_cell_3c, cell_r2_m_r1, &
2613 cell_found, bs_env%cell_to_index_3c, i_cell_r2_m_r1)
2614 IF (.NOT. cell_found) cycle
2615
2616 ! S_1 - R_1 + R_2
2617 CALL add_r(cell_s1, cell_r2_m_r1, bs_env%index_to_cell_3c, cell_s1_m_r2_p_r1, &
2618 cell_found, bs_env%cell_to_index_3c, i_cell_s1_m_r1_p_r2)
2619 IF (.NOT. cell_found) cycle
2620
2621 n_tensor_ops_delta_r(i_cell_delta_r) = n_tensor_ops_delta_r(i_cell_delta_r) + 1
2622
2623 END DO ! i_cell_R2
2624
2625 DO i_cell_s2 = 1, bs_env%nimages_scf_desymm
2626
2627 cell_s2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_s2)
2628 cell_m_r1(1:3) = -cell_r1(1:3)
2629 cell_s1_p_s2_m_r1(1:3) = cell_s1(1:3) + cell_s2(1:3) - cell_r1(1:3)
2630
2631 CALL is_cell_in_index_to_cell(cell_m_r1, bs_env%index_to_cell_3c, cell_found)
2632 IF (.NOT. cell_found) cycle
2633
2634 CALL is_cell_in_index_to_cell(cell_s1_p_s2_m_r1, bs_env%index_to_cell_3c, cell_found)
2635 IF (.NOT. cell_found) cycle
2636
2637 END DO ! i_cell_S2
2638
2639 DO i_cell_r = 1, bs_env%nimages_scf_desymm
2640
2641 cell_r = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_r)
2642
2643 ! R_1 - R
2644 CALL add_r(cell_r1, -cell_r, bs_env%index_to_cell_3c, cell_r1_minus_r, &
2645 cell_found, bs_env%cell_to_index_3c, i_cell_r1_minus_r)
2646 IF (.NOT. cell_found) cycle
2647
2648 ! S_1 - R
2649 CALL add_r(cell_s1, -cell_r, bs_env%index_to_cell_3c, cell_s1_minus_r, &
2650 cell_found, bs_env%cell_to_index_3c, i_cell_s1_minus_r)
2651 IF (.NOT. cell_found) cycle
2652
2653 END DO ! i_cell_R
2654
2655 END DO ! i_cell_R1
2656
2657 END DO ! i_cell_Delta_R
2658
2659 CALL bs_env%para_env%sum(n_tensor_ops_delta_r)
2660
2661 CALL timestop(handle)
2662
2663 END SUBROUTINE compute_n_tensor_ops_delta_r
2664
2665! **************************************************************************************************
2666!> \brief ...
2667!> \param cell_1 ...
2668!> \param cell_2 ...
2669!> \param index_to_cell ...
2670!> \param cell_1_plus_2 ...
2671!> \param cell_found ...
2672!> \param cell_to_index ...
2673!> \param i_cell_1_plus_2 ...
2674! **************************************************************************************************
2675 SUBROUTINE add_r(cell_1, cell_2, index_to_cell, cell_1_plus_2, cell_found, &
2676 cell_to_index, i_cell_1_plus_2)
2677
2678 INTEGER, DIMENSION(3) :: cell_1, cell_2
2679 INTEGER, DIMENSION(:, :) :: index_to_cell
2680 INTEGER, DIMENSION(3) :: cell_1_plus_2
2681 LOGICAL :: cell_found
2682 INTEGER, DIMENSION(:, :, :), INTENT(IN), &
2683 OPTIONAL, POINTER :: cell_to_index
2684 INTEGER, INTENT(OUT), OPTIONAL :: i_cell_1_plus_2
2685
2686 CHARACTER(LEN=*), PARAMETER :: routinen = 'add_R'
2687
2688 INTEGER :: handle
2689
2690 CALL timeset(routinen, handle)
2691
2692 cell_1_plus_2(1:3) = cell_1(1:3) + cell_2(1:3)
2693
2694 CALL is_cell_in_index_to_cell(cell_1_plus_2, index_to_cell, cell_found)
2695
2696 IF (PRESENT(i_cell_1_plus_2)) THEN
2697 IF (cell_found) THEN
2698 cpassert(PRESENT(cell_to_index))
2699 i_cell_1_plus_2 = cell_to_index(cell_1_plus_2(1), cell_1_plus_2(2), cell_1_plus_2(3))
2700 ELSE
2701 i_cell_1_plus_2 = -1000
2702 END IF
2703 END IF
2704
2705 CALL timestop(handle)
2706
2707 END SUBROUTINE add_r
2708
2709! **************************************************************************************************
2710!> \brief ...
2711!> \param cell ...
2712!> \param index_to_cell ...
2713!> \param cell_found ...
2714! **************************************************************************************************
2715 SUBROUTINE is_cell_in_index_to_cell(cell, index_to_cell, cell_found)
2716 INTEGER, DIMENSION(3) :: cell
2717 INTEGER, DIMENSION(:, :) :: index_to_cell
2718 LOGICAL :: cell_found
2719
2720 CHARACTER(LEN=*), PARAMETER :: routinen = 'is_cell_in_index_to_cell'
2721
2722 INTEGER :: handle, i_cell, nimg
2723 INTEGER, DIMENSION(3) :: cell_i
2724
2725 CALL timeset(routinen, handle)
2726
2727 nimg = SIZE(index_to_cell, 2)
2728
2729 cell_found = .false.
2730
2731 DO i_cell = 1, nimg
2732
2733 cell_i(1:3) = index_to_cell(1:3, i_cell)
2734
2735 IF (cell_i(1) == cell(1) .AND. cell_i(2) == cell(2) .AND. cell_i(3) == cell(3)) THEN
2736 cell_found = .true.
2737 END IF
2738
2739 END DO
2740
2741 CALL timestop(handle)
2742
2743 END SUBROUTINE is_cell_in_index_to_cell
2744
2745! **************************************************************************************************
2746!> \brief ...
2747!> \param qs_env ...
2748!> \param bs_env ...
2749! **************************************************************************************************
2750 SUBROUTINE allocate_matrices_small_cell_full_kp(qs_env, bs_env)
2751 TYPE(qs_environment_type), POINTER :: qs_env
2752 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2753
2754 CHARACTER(LEN=*), PARAMETER :: routinen = 'allocate_matrices_small_cell_full_kp'
2755
2756 INTEGER :: handle, i_spin, i_t, img, n_spin, &
2757 nimages_scf, num_time_freq_points
2758 TYPE(cp_blacs_env_type), POINTER :: blacs_env
2759 TYPE(mp_para_env_type), POINTER :: para_env
2760
2761 CALL timeset(routinen, handle)
2762
2763 nimages_scf = bs_env%nimages_scf_desymm
2764 num_time_freq_points = bs_env%num_time_freq_points
2765 n_spin = bs_env%n_spin
2766
2767 CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2768
2769 ALLOCATE (bs_env%fm_G_S(nimages_scf))
2770 ALLOCATE (bs_env%fm_Sigma_x_R(nimages_scf))
2771 ALLOCATE (bs_env%fm_chi_R_t(nimages_scf, num_time_freq_points))
2772 ALLOCATE (bs_env%fm_MWM_R_t(nimages_scf, num_time_freq_points))
2773 ALLOCATE (bs_env%fm_Sigma_c_R_neg_tau(nimages_scf, num_time_freq_points, n_spin))
2774 ALLOCATE (bs_env%fm_Sigma_c_R_pos_tau(nimages_scf, num_time_freq_points, n_spin))
2775 DO img = 1, nimages_scf
2776 CALL cp_fm_create(bs_env%fm_G_S(img), bs_env%fm_work_mo(1)%matrix_struct)
2777 CALL cp_fm_create(bs_env%fm_Sigma_x_R(img), bs_env%fm_work_mo(1)%matrix_struct)
2778 DO i_t = 1, num_time_freq_points
2779 CALL cp_fm_create(bs_env%fm_chi_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2780 CALL cp_fm_create(bs_env%fm_MWM_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2781 CALL cp_fm_set_all(bs_env%fm_MWM_R_t(img, i_t), 0.0_dp)
2782 DO i_spin = 1, n_spin
2783 CALL cp_fm_create(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), &
2784 bs_env%fm_work_mo(1)%matrix_struct)
2785 CALL cp_fm_create(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), &
2786 bs_env%fm_work_mo(1)%matrix_struct)
2787 CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), 0.0_dp)
2788 CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), 0.0_dp)
2789 END DO
2790 END DO
2791 END DO
2792
2793 CALL timestop(handle)
2794
2795 END SUBROUTINE allocate_matrices_small_cell_full_kp
2796
2797! **************************************************************************************************
2798!> \brief ...
2799!> \param qs_env ...
2800!> \param bs_env ...
2801! **************************************************************************************************
2802 SUBROUTINE trafo_v_xc_r_to_kp(qs_env, bs_env)
2803 TYPE(qs_environment_type), POINTER :: qs_env
2804 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2805
2806 CHARACTER(LEN=*), PARAMETER :: routinen = 'trafo_V_xc_R_to_kp'
2807
2808 INTEGER :: handle, ikp, img, ispin, n_ao
2809 INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index_scf
2810 TYPE(cp_cfm_type) :: cfm_mo_coeff, cfm_tmp, cfm_v_xc
2811 TYPE(cp_fm_type) :: fm_v_xc_re
2812 TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks
2813 TYPE(kpoint_type), POINTER :: kpoints_scf
2814 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
2815 POINTER :: sab_nl
2816
2817 CALL timeset(routinen, handle)
2818
2819 n_ao = bs_env%n_ao
2820
2821 CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks, kpoints=kpoints_scf)
2822
2823 NULLIFY (sab_nl)
2824 CALL get_kpoint_info(kpoints_scf, sab_nl=sab_nl, cell_to_index=cell_to_index_scf)
2825
2826 CALL cp_cfm_create(cfm_v_xc, bs_env%cfm_work_mo%matrix_struct)
2827 CALL cp_cfm_create(cfm_mo_coeff, bs_env%cfm_work_mo%matrix_struct)
2828 CALL cp_cfm_create(cfm_tmp, bs_env%cfm_work_mo%matrix_struct)
2829 CALL cp_fm_create(fm_v_xc_re, bs_env%cfm_work_mo%matrix_struct)
2830
2831 DO img = 1, bs_env%nimages_scf
2832 DO ispin = 1, bs_env%n_spin
2833 ! JW kind of hack because the format of matrix_ks remains dubious...
2834 CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
2835 CALL copy_fm_to_dbcsr(bs_env%fm_V_xc_R(img, ispin), matrix_ks(ispin, img)%matrix)
2836 END DO
2837 END DO
2838
2839 ALLOCATE (bs_env%v_xc_n(n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
2840
2841 DO ispin = 1, bs_env%n_spin
2842 DO ikp = 1, bs_env%nkp_bs_and_DOS
2843
2844 ! v^xc^R -> v^xc(k) (matrix_ks stores v^xc^R, see SUBROUTINE compute_V_xc)
2845 CALL rsmat_to_kp(matrix_ks, ispin, bs_env%kpoints_DOS%xkp(1:3, ikp), &
2846 cell_to_index_scf, sab_nl, bs_env, cfm_v_xc)
2847
2848 ! get C_µn(k)
2849 CALL cp_cfm_to_cfm(bs_env%cfm_mo_coeff_kp(ikp, ispin), cfm_mo_coeff)
2850
2851 ! v^xc_nm(k_i) = sum_µν C^*_µn(k_i) v^xc_µν(k_i) C_νn(k_i)
2852 CALL parallel_gemm('N', 'N', n_ao, n_ao, n_ao, z_one, cfm_v_xc, cfm_mo_coeff, &
2853 z_zero, cfm_tmp)
2854 CALL parallel_gemm('C', 'N', n_ao, n_ao, n_ao, z_one, cfm_mo_coeff, cfm_tmp, &
2855 z_zero, cfm_v_xc)
2856
2857 ! get v^xc_nn(k_i) which is a real quantity as v^xc is Hermitian
2858 CALL cp_cfm_to_fm(cfm_v_xc, fm_v_xc_re)
2859 CALL cp_fm_get_diag(fm_v_xc_re, bs_env%v_xc_n(:, ikp, ispin))
2860
2861 END DO
2862
2863 END DO
2864
2865 ! just rebuild the overwritten KS matrix again
2866 CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.false., just_energy=.false.)
2867
2868 CALL cp_cfm_release(cfm_v_xc)
2869 CALL cp_cfm_release(cfm_mo_coeff)
2870 CALL cp_cfm_release(cfm_tmp)
2871 CALL cp_fm_release(fm_v_xc_re)
2872
2873 CALL timestop(handle)
2874
2875 END SUBROUTINE trafo_v_xc_r_to_kp
2876
2877! **************************************************************************************************
2878!> \brief ...
2879!> \param qs_env ...
2880!> \param bs_env ...
2881! **************************************************************************************************
2882 SUBROUTINE heuristic_ri_regularization(qs_env, bs_env)
2883 TYPE(qs_environment_type), POINTER :: qs_env
2884 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2885
2886 CHARACTER(LEN=*), PARAMETER :: routinen = 'heuristic_RI_regularization'
2887
2888 COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: m
2889 INTEGER :: handle, ikp, ikp_local, n_ri, nkp, &
2890 nkp_local, u
2891 REAL(kind=dp) :: cond_nr, cond_nr_max, max_ev, &
2892 max_ev_ikp, min_ev, min_ev_ikp
2893 REAL(kind=dp), ALLOCATABLE, DIMENSION(:, :, :) :: m_r
2894
2895 CALL timeset(routinen, handle)
2896
2897 ! compute M^R_PQ = <phi_P,0|V^tr(rc)|phi_Q,R> for RI metric
2898 CALL get_v_tr_r(m_r, bs_env%ri_metric, 0.0_dp, bs_env, qs_env)
2899
2900 nkp = bs_env%nkp_chi_eps_W_orig_plus_extra
2901 n_ri = bs_env%n_RI
2902
2903 nkp_local = 0
2904 DO ikp = 1, nkp
2905 ! trivial parallelization over k-points
2906 IF (modulo(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) cycle
2907 nkp_local = nkp_local + 1
2908 END DO
2909
2910 ALLOCATE (m(n_ri, n_ri, nkp_local))
2911
2912 ikp_local = 0
2913 cond_nr_max = 0.0_dp
2914 min_ev = 1000.0_dp
2915 max_ev = -1000.0_dp
2916
2917 DO ikp = 1, nkp
2918
2919 ! trivial parallelization
2920 IF (modulo(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) cycle
2921
2922 ikp_local = ikp_local + 1
2923
2924 ! M(k) = sum_R e^ikR M^R
2925 CALL rs_to_kp(m_r, m(:, :, ikp_local), &
2926 bs_env%kpoints_scf_desymm%index_to_cell, &
2927 bs_env%kpoints_chi_eps_W%xkp(1:3, ikp))
2928
2929 ! compute condition number of M_PQ(k)
2930 CALL power(m(:, :, ikp_local), 1.0_dp, 0.0_dp, cond_nr, min_ev_ikp, max_ev_ikp)
2931
2932 IF (cond_nr > cond_nr_max) cond_nr_max = cond_nr
2933 IF (max_ev_ikp > max_ev) max_ev = max_ev_ikp
2934 IF (min_ev_ikp < min_ev) min_ev = min_ev_ikp
2935
2936 END DO ! ikp
2937
2938 CALL bs_env%para_env%max(cond_nr_max)
2939
2940 u = bs_env%unit_nr
2941 IF (u > 0) THEN
2942 WRITE (u, fmt="(T2,A,ES34.1)") "Min. abs. eigenvalue of RI metric matrix M(k)", min_ev
2943 WRITE (u, fmt="(T2,A,ES34.1)") "Max. abs. eigenvalue of RI metric matrix M(k)", max_ev
2944 WRITE (u, fmt="(T2,A,ES50.1)") "Max. condition number of M(k)", cond_nr_max
2945 END IF
2946
2947 CALL timestop(handle)
2948
2949 END SUBROUTINE heuristic_ri_regularization
2950
2951! **************************************************************************************************
2952!> \brief ...
2953!> \param V_tr_R ...
2954!> \param pot_type ...
2955!> \param regularization_RI ...
2956!> \param bs_env ...
2957!> \param qs_env ...
2958! **************************************************************************************************
2959 SUBROUTINE get_v_tr_r(V_tr_R, pot_type, regularization_RI, bs_env, qs_env)
2960 REAL(kind=dp), ALLOCATABLE, DIMENSION(:, :, :) :: v_tr_r
2961 TYPE(libint_potential_type) :: pot_type
2962 REAL(kind=dp) :: regularization_ri
2963 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2964 TYPE(qs_environment_type), POINTER :: qs_env
2965
2966 CHARACTER(LEN=*), PARAMETER :: routinen = 'get_V_tr_R'
2967
2968 INTEGER :: handle, img, nimages_scf_desymm
2969 INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_ri
2970 INTEGER, DIMENSION(:), POINTER :: col_bsize, row_bsize
2971 TYPE(cp_blacs_env_type), POINTER :: blacs_env
2972 TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_v_tr_r
2973 TYPE(dbcsr_distribution_type) :: dbcsr_dist
2974 TYPE(dbcsr_type), ALLOCATABLE, DIMENSION(:) :: mat_v_tr_r
2975 TYPE(distribution_2d_type), POINTER :: dist_2d
2976 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
2977 POINTER :: sab_ri
2978 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
2979 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
2980
2981 CALL timeset(routinen, handle)
2982
2983 NULLIFY (sab_ri, dist_2d)
2984
2985 CALL get_qs_env(qs_env=qs_env, &
2986 blacs_env=blacs_env, &
2987 distribution_2d=dist_2d, &
2988 qs_kind_set=qs_kind_set, &
2989 particle_set=particle_set)
2990
2991 ALLOCATE (sizes_ri(bs_env%n_atom))
2992 CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_ri, basis=bs_env%basis_set_RI)
2993 CALL build_2c_neighbor_lists(sab_ri, bs_env%basis_set_RI, bs_env%basis_set_RI, &
2994 pot_type, "2c_nl_RI", qs_env, sym_ij=.false., &
2995 dist_2d=dist_2d)
2996 CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
2997 ALLOCATE (row_bsize(SIZE(sizes_ri)))
2998 ALLOCATE (col_bsize(SIZE(sizes_ri)))
2999 row_bsize(:) = sizes_ri
3000 col_bsize(:) = sizes_ri
3001
3002 nimages_scf_desymm = bs_env%nimages_scf_desymm
3003 ALLOCATE (mat_v_tr_r(nimages_scf_desymm))
3004 CALL dbcsr_create(mat_v_tr_r(1), "(RI|RI)", dbcsr_dist, dbcsr_type_no_symmetry, &
3005 row_bsize, col_bsize)
3006 DEALLOCATE (row_bsize, col_bsize)
3007
3008 DO img = 2, nimages_scf_desymm
3009 CALL dbcsr_create(mat_v_tr_r(img), template=mat_v_tr_r(1))
3010 END DO
3011
3012 CALL build_2c_integrals(mat_v_tr_r, 0.0_dp, qs_env, sab_ri, bs_env%basis_set_RI, &
3013 bs_env%basis_set_RI, pot_type, do_kpoints=.true., &
3014 ext_kpoints=bs_env%kpoints_scf_desymm, &
3015 regularization_ri=regularization_ri)
3016
3017 ALLOCATE (fm_v_tr_r(nimages_scf_desymm))
3018 DO img = 1, nimages_scf_desymm
3019 CALL cp_fm_create(fm_v_tr_r(img), bs_env%fm_RI_RI%matrix_struct)
3020 CALL copy_dbcsr_to_fm(mat_v_tr_r(img), fm_v_tr_r(img))
3021 CALL dbcsr_release(mat_v_tr_r(img))
3022 END DO
3023
3024 IF (.NOT. ALLOCATED(v_tr_r)) THEN
3025 ALLOCATE (v_tr_r(bs_env%n_RI, bs_env%n_RI, nimages_scf_desymm))
3026 END IF
3027
3028 CALL fm_to_local_array(fm_v_tr_r, v_tr_r)
3029
3030 CALL cp_fm_release(fm_v_tr_r)
3031 CALL dbcsr_distribution_release(dbcsr_dist)
3032 CALL release_neighbor_list_sets(sab_ri)
3033
3034 CALL timestop(handle)
3035
3036 END SUBROUTINE get_v_tr_r
3037
3038! **************************************************************************************************
3039!> \brief ...
3040!> \param matrix ...
3041!> \param exponent ...
3042!> \param eps ...
3043!> \param cond_nr ...
3044!> \param min_ev ...
3045!> \param max_ev ...
3046! **************************************************************************************************
3047 SUBROUTINE power(matrix, exponent, eps, cond_nr, min_ev, max_ev)
3048 COMPLEX(KIND=dp), DIMENSION(:, :) :: matrix
3049 REAL(kind=dp) :: exponent, eps
3050 REAL(kind=dp), OPTIONAL :: cond_nr, min_ev, max_ev
3051
3052 CHARACTER(len=*), PARAMETER :: routinen = 'power'
3053
3054 COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: eigenvectors
3055 INTEGER :: handle, i, n
3056 REAL(kind=dp) :: pos_eval
3057 REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues
3058
3059 CALL timeset(routinen, handle)
3060
3061 ! make matrix perfectly Hermitian
3062 matrix(:, :) = 0.5_dp*(matrix(:, :) + conjg(transpose(matrix(:, :))))
3063
3064 n = SIZE(matrix, 1)
3065 ALLOCATE (eigenvalues(n), eigenvectors(n, n))
3066 CALL diag_complex(matrix, eigenvectors, eigenvalues)
3067
3068 IF (PRESENT(cond_nr)) cond_nr = maxval(abs(eigenvalues))/minval(abs(eigenvalues))
3069 IF (PRESENT(min_ev)) min_ev = minval(abs(eigenvalues))
3070 IF (PRESENT(max_ev)) max_ev = maxval(abs(eigenvalues))
3071
3072 DO i = 1, n
3073 IF (eps < eigenvalues(i)) THEN
3074 pos_eval = (eigenvalues(i))**(0.5_dp*exponent)
3075 ELSE
3076 pos_eval = 0.0_dp
3077 END IF
3078 eigenvectors(:, i) = eigenvectors(:, i)*pos_eval
3079 END DO
3080
3081 CALL zgemm("N", "C", n, n, n, z_one, eigenvectors, n, eigenvectors, n, z_zero, matrix, n)
3082
3083 DEALLOCATE (eigenvalues, eigenvectors)
3084
3085 CALL timestop(handle)
3086
3087 END SUBROUTINE power
3088
3089! **************************************************************************************************
3090!> \brief ...
3091!> \param bs_env ...
3092!> \param Sigma_c_n_time ...
3093!> \param Sigma_c_n_freq ...
3094!> \param ispin ...
3095! **************************************************************************************************
3096 SUBROUTINE time_to_freq(bs_env, Sigma_c_n_time, Sigma_c_n_freq, ispin)
3097 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3098 REAL(kind=dp), DIMENSION(:, :, :) :: sigma_c_n_time, sigma_c_n_freq
3099 INTEGER :: ispin
3100
3101 CHARACTER(LEN=*), PARAMETER :: routinen = 'time_to_freq'
3102
3103 INTEGER :: handle, i_t, j_w, n_occ
3104 REAL(kind=dp) :: freq_j, time_i, w_cos_ij, w_sin_ij
3105 REAL(kind=dp), ALLOCATABLE, DIMENSION(:, :) :: sigma_c_n_cos_time, sigma_c_n_sin_time
3106
3107 CALL timeset(routinen, handle)
3108
3109 ALLOCATE (sigma_c_n_cos_time(bs_env%n_ao, bs_env%num_time_freq_points))
3110 ALLOCATE (sigma_c_n_sin_time(bs_env%n_ao, bs_env%num_time_freq_points))
3111
3112 sigma_c_n_cos_time(:, :) = 0.5_dp*(sigma_c_n_time(:, :, 1) + sigma_c_n_time(:, :, 2))
3113 sigma_c_n_sin_time(:, :) = 0.5_dp*(sigma_c_n_time(:, :, 1) - sigma_c_n_time(:, :, 2))
3114
3115 sigma_c_n_freq(:, :, :) = 0.0_dp
3116
3117 DO i_t = 1, bs_env%num_time_freq_points
3118
3119 DO j_w = 1, bs_env%num_time_freq_points
3120
3121 freq_j = bs_env%imag_freq_points(j_w)
3122 time_i = bs_env%imag_time_points(i_t)
3123 ! integration weights for cosine and sine transform
3124 w_cos_ij = bs_env%weights_cos_t_to_w(j_w, i_t)*cos(freq_j*time_i)
3125 w_sin_ij = bs_env%weights_sin_t_to_w(j_w, i_t)*sin(freq_j*time_i)
3126
3127 ! 1. Re(Σ^c_nn(k_i,iω)) from cosine transform
3128 sigma_c_n_freq(:, j_w, 1) = sigma_c_n_freq(:, j_w, 1) + &
3129 w_cos_ij*sigma_c_n_cos_time(:, i_t)
3130
3131 ! 2. Im(Σ^c_nn(k_i,iω)) from sine transform
3132 sigma_c_n_freq(:, j_w, 2) = sigma_c_n_freq(:, j_w, 2) + &
3133 w_sin_ij*sigma_c_n_sin_time(:, i_t)
3134
3135 END DO
3136
3137 END DO
3138
3139 ! for occupied levels, we need the correlation self-energy for negative omega.
3140 ! Therefore, weight_sin should be computed with -omega, which results in an
3141 ! additional minus for the imaginary part:
3142 n_occ = bs_env%n_occ(ispin)
3143 sigma_c_n_freq(1:n_occ, :, 2) = -sigma_c_n_freq(1:n_occ, :, 2)
3144
3145 CALL timestop(handle)
3146
3147 END SUBROUTINE time_to_freq
3148
3149! **************************************************************************************************
3150!> \brief ...
3151!> \param bs_env ...
3152!> \param Sigma_c_ikp_n_freq ...
3153!> \param Sigma_x_ikp_n ...
3154!> \param V_xc_ikp_n ...
3155!> \param eigenval_scf ...
3156!> \param ikp ...
3157!> \param ispin ...
3158! **************************************************************************************************
3159 SUBROUTINE analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
3160 eigenval_scf, ikp, ispin)
3161
3162 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3163 REAL(kind=dp), DIMENSION(:, :, :) :: sigma_c_ikp_n_freq
3164 REAL(kind=dp), DIMENSION(:) :: sigma_x_ikp_n, v_xc_ikp_n, eigenval_scf
3165 INTEGER :: ikp, ispin
3166
3167 CHARACTER(LEN=*), PARAMETER :: routinen = 'analyt_conti_and_print'
3168
3169 CHARACTER(len=3) :: occ_vir
3170 CHARACTER(len=default_string_length) :: fname
3171 INTEGER :: handle, i_mo, ikp_for_print, iunit, &
3172 n_mo, nkp
3173 LOGICAL :: is_bandstruc_kpoint, print_dos_kpoints, &
3174 print_ikp
3175 REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: dummy, sigma_c_ikp_n_qp
3176
3177 CALL timeset(routinen, handle)
3178
3179 n_mo = bs_env%n_ao
3180 ALLOCATE (dummy(n_mo), sigma_c_ikp_n_qp(n_mo))
3181 sigma_c_ikp_n_qp(:) = 0.0_dp
3182
3183 DO i_mo = 1, n_mo
3184
3185 ! parallelization
3186 IF (modulo(i_mo, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) cycle
3187
3188 CALL continuation_pade(sigma_c_ikp_n_qp, &
3189 bs_env%imag_freq_points_fit, dummy, dummy, &
3190 sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 1)*z_one + &
3191 sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 2)*gaussi, &
3192 sigma_x_ikp_n(:) - v_xc_ikp_n(:), &
3193 eigenval_scf(:), eigenval_scf(:), &
3194 bs_env%do_hedin_shift, &
3195 i_mo, bs_env%n_occ(ispin), bs_env%n_vir(ispin), &
3196 bs_env%nparam_pade, bs_env%num_freq_points_fit, &
3197 ri_rpa_g0w0_crossing_newton, bs_env%n_occ(ispin), &
3198 0.0_dp, .true., .false., 1, e_fermi_ext=bs_env%e_fermi(ispin))
3199 END DO
3200
3201 CALL bs_env%para_env%sum(sigma_c_ikp_n_qp)
3202
3203 CALL correct_obvious_fitting_fails(sigma_c_ikp_n_qp, ispin, bs_env)
3204
3205 bs_env%eigenval_G0W0(:, ikp, ispin) = eigenval_scf(:) + &
3206 sigma_c_ikp_n_qp(:) + &
3207 sigma_x_ikp_n(:) - &
3208 v_xc_ikp_n(:)
3209
3210 bs_env%eigenval_HF(:, ikp, ispin) = eigenval_scf(:) + sigma_x_ikp_n(:) - v_xc_ikp_n(:)
3211
3212 ! only print eigenvalues of DOS k-points in case no bandstructure path has been given
3213 print_dos_kpoints = (bs_env%nkp_only_bs <= 0)
3214 ! in kpoints_DOS, the last nkp_only_bs are bandstructure k-points
3215 is_bandstruc_kpoint = (ikp > bs_env%nkp_only_DOS)
3216 print_ikp = print_dos_kpoints .OR. is_bandstruc_kpoint
3217
3218 IF (bs_env%para_env%is_source() .AND. print_ikp) THEN
3219
3220 IF (print_dos_kpoints) THEN
3221 nkp = bs_env%nkp_only_DOS
3222 ikp_for_print = ikp
3223 ELSE
3224 nkp = bs_env%nkp_only_bs
3225 ikp_for_print = ikp - bs_env%nkp_only_DOS
3226 END IF
3227
3228 fname = "bandstructure_SCF_and_G0W0"
3229
3230 IF (ikp_for_print == 1) THEN
3231 CALL open_file(trim(fname), unit_number=iunit, file_status="REPLACE", &
3232 file_action="WRITE")
3233 ELSE
3234 CALL open_file(trim(fname), unit_number=iunit, file_status="OLD", &
3235 file_action="WRITE", file_position="APPEND")
3236 END IF
3237
3238 WRITE (iunit, "(A)") " "
3239 WRITE (iunit, "(A10,I7,A25,3F10.4)") "kpoint: ", ikp_for_print, "coordinate: ", &
3240 bs_env%kpoints_DOS%xkp(:, ikp)
3241 WRITE (iunit, "(A)") " "
3242 WRITE (iunit, "(A5,A12,3A17,A16,A18)") "n", "k", ϵ"_nk^DFT (eV)", Σ"^c_nk (eV)", &
3243 Σ"^x_nk (eV)", "v_nk^xc (eV)", ϵ"_nk^G0W0 (eV)"
3244 WRITE (iunit, "(A)") " "
3245
3246 DO i_mo = 1, n_mo
3247 IF (i_mo <= bs_env%n_occ(ispin)) occ_vir = 'occ'
3248 IF (i_mo > bs_env%n_occ(ispin)) occ_vir = 'vir'
3249 WRITE (iunit, "(I5,3A,I5,4F16.3,F17.3)") i_mo, ' (', occ_vir, ') ', ikp_for_print, &
3250 eigenval_scf(i_mo)*evolt, &
3251 sigma_c_ikp_n_qp(i_mo)*evolt, &
3252 sigma_x_ikp_n(i_mo)*evolt, &
3253 v_xc_ikp_n(i_mo)*evolt, &
3254 bs_env%eigenval_G0W0(i_mo, ikp, ispin)*evolt
3255 END DO
3256
3257 WRITE (iunit, "(A)") " "
3258
3259 CALL close_file(iunit)
3260
3261 END IF
3262
3263 CALL timestop(handle)
3264
3265 END SUBROUTINE analyt_conti_and_print
3266
3267! **************************************************************************************************
3268!> \brief ...
3269!> \param Sigma_c_ikp_n_qp ...
3270!> \param ispin ...
3271!> \param bs_env ...
3272! **************************************************************************************************
3273 SUBROUTINE correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
3274 REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: sigma_c_ikp_n_qp
3275 INTEGER :: ispin
3276 TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3277
3278 CHARACTER(LEN=*), PARAMETER :: routinen = 'correct_obvious_fitting_fails'
3279
3280 INTEGER :: handle, homo, i_mo, j_mo, &
3281 n_levels_scissor, n_mo
3282 LOGICAL :: is_occ, is_vir
3283 REAL(kind=dp) :: sum_sigma_c
3284
3285 CALL timeset(routinen, handle)
3286
3287 n_mo = bs_env%n_ao
3288 homo = bs_env%n_occ(ispin)
3289
3290 DO i_mo = 1, n_mo
3291
3292 ! if |𝚺^c| > 13 eV, we use a scissors shift
3293 IF (abs(sigma_c_ikp_n_qp(i_mo)) > 13.0_dp/evolt) THEN
3294
3295 is_occ = (i_mo <= homo)
3296 is_vir = (i_mo > homo)
3297
3298 n_levels_scissor = 0
3299 sum_sigma_c = 0.0_dp
3300
3301 ! compute scissor
3302 DO j_mo = 1, n_mo
3303
3304 ! only compute scissor from other GW levels close in energy
3305 IF (is_occ .AND. j_mo > homo) cycle
3306 IF (is_vir .AND. j_mo <= homo) cycle
3307 IF (abs(i_mo - j_mo) > 10) cycle
3308 IF (i_mo == j_mo) cycle
3309
3310 n_levels_scissor = n_levels_scissor + 1
3311 sum_sigma_c = sum_sigma_c + sigma_c_ikp_n_qp(j_mo)
3312
3313 END DO
3314
3315 ! overwrite the self-energy with scissor shift
3316 sigma_c_ikp_n_qp(i_mo) = sum_sigma_c/real(n_levels_scissor, kind=dp)
3317
3318 END IF
3319
3320 END DO ! i_mo
3321
3322 CALL timestop(handle)
3323
3324 END SUBROUTINE correct_obvious_fitting_fails
3325
3326END MODULE gw_utils
static GRID_HOST_DEVICE int modulo(int a, int m)
Equivalent of Fortran's MODULO, which always return a positive number. https://gcc....
struct tensor_ tensor
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind_set(atomic_kind_set, atom_of_kind, kind_of, natom_of_kind, maxatom, natom, nshell, fist_potential_present, shell_present, shell_adiabatic, shell_check_distance, damping_present)
Get attributes of an atomic kind set.
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
collects all references to literature in CP2K as new algorithms / method are included from literature...
integer, save, public graml2024
Handles all functions related to the CELL.
Definition cell_types.F:15
subroutine, public scaled_to_real(r, s, cell)
Transform scaled cell coordinates real coordinates. r=h*s.
Definition cell_types.F:521
methods related to the blacs parallel environment
subroutine, public cp_blacs_env_release(blacs_env)
releases the given blacs_env
subroutine, public cp_blacs_env_create(blacs_env, para_env, blacs_grid_layout, blacs_repeatable, row_major, grid_2d)
allocates and initializes a type that represent a blacs context
Represents a complex full matrix distributed on many processors.
subroutine, public cp_cfm_release(matrix)
Releases a full matrix.
subroutine, public cp_cfm_create(matrix, matrix_struct, name, nrow, ncol, set_zero)
Creates a new full matrix with the given structure.
subroutine, public cp_cfm_to_fm(msource, mtargetr, mtargeti)
Copy real and imaginary parts of a complex full matrix into separate real-value full matrices.
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_distribution_release(dist)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_release(matrix)
...
DBCSR operations in CP2K.
subroutine, public cp_dbcsr_dist2d_to_dist(dist2d, dist)
Creates a DBCSR distribution from a distribution_2d.
subroutine, public copy_dbcsr_to_fm(matrix, fm)
Copy a DBCSR matrix to a BLACS matrix.
subroutine, public copy_fm_to_dbcsr(fm, matrix, keep_sparsity)
Copy a BLACS matrix to a dbcsr matrix.
Utility routines to open and close files. Tracking of preconnections.
Definition cp_files.F:16
subroutine, public open_file(file_name, file_status, file_form, file_action, file_position, file_pad, unit_number, debug, skip_get_unit_number, file_access)
Opens the requested file using a free unit number.
Definition cp_files.F:311
subroutine, public close_file(unit_number, file_status, keep_preconnection)
Close an open file given by its logical unit number. Optionally, keep the file and unit preconnected.
Definition cp_files.F:122
Basic linear algebra operations for full matrices.
subroutine, public cp_fm_scale_and_add(alpha, matrix_a, beta, matrix_b)
calc A <- alpha*A + beta*B optimized for alpha == 1.0 (just add beta*B) and beta == 0....
represent the structure of a full matrix
subroutine, public cp_fm_struct_create(fmstruct, para_env, context, nrow_global, ncol_global, nrow_block, ncol_block, descriptor, first_p_pos, local_leading_dimension, template_fmstruct, square_blocks, force_block)
allocates and initializes a full matrix structure
subroutine, public cp_fm_struct_release(fmstruct)
releases a full matrix structure
represent a full matrix distributed on many processors
Definition cp_fm_types.F:15
subroutine, public cp_fm_get_diag(matrix, diag)
returns the diagonal elements of a fm
subroutine, public cp_fm_create(matrix, matrix_struct, name, use_sp, nrow, ncol, set_zero)
creates a new full matrix with the given structure
subroutine, public cp_fm_set_all(matrix, alpha, beta)
set all elements of a matrix to the same value, and optionally the diagonal to a different one
various routines to log and control the output. The idea is that decisions about where to log should ...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
character(len=default_path_length) function, public cp_print_key_generate_filename(logger, print_key, middle_name, extension, my_local)
Utility function that returns a unit number to write the print key. Might open a file with a unique f...
This is the start of a dbt_api, all publically needed functions are exported here....
Definition dbt_api.F:17
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
subroutine, public fm_to_local_array(fm_s, array_s, weight, add)
...
Utility method to build 3-center integrals for small cell GW.
subroutine, public build_3c_integral_block(int_3c, qs_env, potential_parameter, basis_j, basis_k, basis_i, cell_j, cell_k, cell_i, atom_j, atom_k, atom_i, j_bf_start_from_atom, k_bf_start_from_atom, i_bf_start_from_atom)
...
subroutine, public get_v_tr_r(v_tr_r, pot_type, regularization_ri, bs_env, qs_env)
...
Definition gw_utils.F:2960
subroutine, public time_to_freq(bs_env, sigma_c_n_time, sigma_c_n_freq, ispin)
...
Definition gw_utils.F:3097
subroutine, public de_init_bs_env(bs_env)
...
Definition gw_utils.F:238
subroutine, public compute_xkp(xkp, ikp_start, ikp_end, grid)
...
Definition gw_utils.F:598
subroutine, public analyt_conti_and_print(bs_env, sigma_c_ikp_n_freq, sigma_x_ikp_n, v_xc_ikp_n, eigenval_scf, ikp, ispin)
...
Definition gw_utils.F:3161
subroutine, public create_and_init_bs_env_for_gw(qs_env, bs_env, bs_sec)
...
Definition gw_utils.F:152
subroutine, public add_r(cell_1, cell_2, index_to_cell, cell_1_plus_2, cell_found, cell_to_index, i_cell_1_plus_2)
...
Definition gw_utils.F:2677
subroutine, public get_i_j_atoms(atoms_i, atoms_j, n_atom_i, n_atom_j, color_sub, bs_env)
...
Definition gw_utils.F:1399
subroutine, public power(matrix, exponent, eps, cond_nr, min_ev, max_ev)
...
Definition gw_utils.F:3048
subroutine, public is_cell_in_index_to_cell(cell, index_to_cell, cell_found)
...
Definition gw_utils.F:2716
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public do_potential_truncated
integer, parameter, public rtp_method_bse
integer, parameter, public small_cell_full_kp
integer, parameter, public large_cell_gamma
integer, parameter, public xc_none
integer, parameter, public ri_rpa_g0w0_crossing_newton
objects that represent the structure of input sections and the data contained in an input section
subroutine, public section_vals_val_set(section_vals, keyword_name, i_rep_section, i_rep_val, val, l_val, i_val, r_val, c_val, l_vals_ptr, i_vals_ptr, r_vals_ptr, c_vals_ptr)
sets the requested value
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public int_8
Definition kinds.F:54
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
integer, parameter, public default_path_length
Definition kinds.F:58
Implements transformations from k-space to R-space for Fortran array matrices.
subroutine, public rs_to_kp(rs_real, ks_complex, index_to_cell, xkp, deriv_direction, hmat)
Integrate RS matrices (stored as Fortran array) into a kpoint matrix at given kp.
Types and basic routines needed for a kpoint calculation.
subroutine, public kpoint_create(kpoint)
Create a kpoint environment.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
2- and 3-center electron repulsion integral routines based on libint2 Currently available operators: ...
Interface to the Libint-Library or a c++ wrapper.
subroutine, public cp_libint_static_cleanup()
subroutine, public cp_libint_static_init()
Machine interface based on Fortran 2003 and POSIX.
Definition machine.F:17
subroutine, public m_memory(mem)
Returns the total amount of memory [bytes] in use, if known, zero otherwise.
Definition machine.F:452
real(kind=dp) function, public m_walltime()
returns time from a real-time clock, protected against rolling early/easily
Definition machine.F:153
Definition of mathematical constants and functions.
complex(kind=dp), parameter, public z_one
complex(kind=dp), parameter, public gaussi
complex(kind=dp), parameter, public z_zero
Collection of simple mathematical functions and subroutines.
Definition mathlib.F:15
subroutine, public diag_complex(matrix, eigenvectors, eigenvalues)
Diagonalizes a local complex Hermitian matrix using LAPACK. Based on cp_cfm_heevd.
Definition mathlib.F:1751
elemental integer function, public gcd(a, b)
computes the greatest common divisor of two number
Definition mathlib.F:1288
Interface to the message passing library MPI.
Routines to calculate the minimax coefficients in order to approximate 1/x as a sum over exponential ...
subroutine, public get_exp_minimax_coeff_gw(k, e_range, aw)
...
Routines to calculate the minimax coefficients in order to approximate 1/x as a sum over exponential ...
Definition minimax_exp.F:29
subroutine, public get_exp_minimax_coeff(k, rc, aw, mm_error, which_coeffs)
Get best minimax approximation for given input parameters. Automatically chooses the most exact set o...
Routines to calculate the minimax coefficients for approximating 1/x as 1/x ~ 1/pi SUM_{i}^{K} w_i x^...
Definition minimax_rpa.F:14
subroutine, public get_rpa_minimax_coeff_larger_grid(k, e_range, aw)
...
subroutine, public get_rpa_minimax_coeff(k, e_range, aw, ierr, print_warning)
The a_i and w_i coefficient are stored in aw such that the first 1:K elements correspond to a_i and t...
Definition minimax_rpa.F:41
Calls routines to get RI integrals and calculate total energies.
Definition mp2_gpw.F:14
subroutine, public create_mat_munu(mat_munu, qs_env, eps_grid, blacs_env_sub, do_ri_aux_basis, do_mixed_basis, group_size_prim, do_alloc_blocks_from_nbl, do_kpoints, sab_orb_sub, dbcsr_sym_type)
Encapsulate the building of dbcsr_matrix mat_munu.
Definition mp2_gpw.F:989
Routines to calculate frequency and time grids (integration points and weights) for correlation metho...
Definition mp2_grids.F:14
subroutine, public get_l_sq_wghts_cos_tf_w_to_t(num_integ_points, tau_tj, weights_cos_tf_w_to_t, omega_tj, e_min, e_max, max_error, num_points_per_magnitude, regularization)
...
Definition mp2_grids.F:1225
subroutine, public get_l_sq_wghts_cos_tf_t_to_w(num_integ_points, tau_tj, weights_cos_tf_t_to_w, omega_tj, e_min, e_max, max_error, num_points_per_magnitude, regularization)
Calculate integration weights for the tau grid (in dependency of the omega node)
Definition mp2_grids.F:726
subroutine, public get_l_sq_wghts_sin_tf_t_to_w(num_integ_points, tau_tj, weights_sin_tf_t_to_w, omega_tj, e_min, e_max, max_error, num_points_per_magnitude, regularization)
Calculate integration weights for the tau grid (in dependency of the omega node)
Definition mp2_grids.F:862
Framework for 2c-integrals for RI.
Definition mp2_ri_2c.F:14
subroutine, public trunc_coulomb_for_exchange(qs_env, trunc_coulomb, rel_cutoff_trunc_coulomb_ri_x, cell_grid, do_bvk_cell)
...
Definition mp2_ri_2c.F:1601
basic linear algebra operations for full matrixes
Define methods related to particle_type.
subroutine, public get_particle_set(particle_set, qs_kind_set, first_sgf, last_sgf, nsgf, nmao, basis)
Get the components of a particle set.
Define the data structure for the particle information.
Definition of physical constants:
Definition physcon.F:68
real(kind=dp), parameter, public evolt
Definition physcon.F:183
real(kind=dp), parameter, public angstrom
Definition physcon.F:144
subroutine, public rsmat_to_kp(mat_rs, ispin, xkp, cell_to_index_scf, sab_nl, bs_env, cfm_kp, imag_rs_mat)
...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, mimic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, sab_cneo, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, rhoz_cneo_set, ecoul_1c, rho0_s_rs, rho0_s_gs, rhoz_cneo_s_rs, rhoz_cneo_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Get the QUICKSTEP environment.
subroutine, public qs_env_part_release(qs_env)
releases part of the given qs_env in order to save memory
Some utility functions for the calculation of integrals.
subroutine, public basis_set_list_setup(basis_set_list, basis_type, qs_kind_set)
Set up an easy accessible list of the basis sets for all kinds.
Calculate the interaction radii for the operator matrix calculation.
subroutine, public init_interaction_radii_orb_basis(orb_basis_set, eps_pgf_orb, eps_pgf_short)
...
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, cneo_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, monovalent, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
routines that build the Kohn-Sham matrix (i.e calculate the coulomb and xc parts
subroutine, public qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, print_active, ext_ks_matrix, ext_xc_section)
routine where the real calculations are made: the KS matrix is calculated
Define the neighbor list data types and the corresponding functionality.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
Utility methods to build 3-center integral tensors of various types.
subroutine, public distribution_3d_create(dist_3d, dist1, dist2, dist3, nkind, particle_set, mp_comm_3d, own_comm)
Create a 3d distribution.
subroutine, public create_2c_tensor(t2c, dist_1, dist_2, pgrid, sizes_1, sizes_2, order, name)
...
subroutine, public create_3c_tensor(t3c, dist_1, dist_2, dist_3, pgrid, sizes_1, sizes_2, sizes_3, map1, map2, name)
...
Utility methods to build 3-center integral tensors of various types.
Definition qs_tensors.F:11
subroutine, public build_2c_integrals(t2c, filter_eps, qs_env, nl_2c, basis_i, basis_j, potential_parameter, do_kpoints, do_hfx_kpoints, ext_kpoints, regularization_ri)
...
subroutine, public build_2c_neighbor_lists(ij_list, basis_i, basis_j, potential_parameter, name, qs_env, sym_ij, molecular, dist_2d, pot_to_rad)
Build 2-center neighborlists adapted to different operators This mainly wraps build_neighbor_lists fo...
Definition qs_tensors.F:144
subroutine, public build_3c_integrals(t3c, filter_eps, qs_env, nl_3c, basis_i, basis_j, basis_k, potential_parameter, int_eps, op_pos, do_kpoints, do_hfx_kpoints, desymmetrize, cell_sym, bounds_i, bounds_j, bounds_k, ri_range, img_to_ri_cell, cell_to_index_ext)
Build 3-center integral tensor.
subroutine, public neighbor_list_3c_destroy(ijk_list)
Destroy 3c neighborlist.
Definition qs_tensors.F:381
subroutine, public get_tensor_occupancy(tensor, nze, occ)
...
subroutine, public build_3c_neighbor_lists(ijk_list, basis_i, basis_j, basis_k, dist_3d, potential_parameter, name, qs_env, sym_ij, sym_jk, sym_ik, molecular, op_pos, own_dist)
Build a 3-center neighbor list.
Definition qs_tensors.F:280
Routines for GW, continuous development [Jan Wilhelm].
Definition rpa_gw.F:14
subroutine, public continuation_pade(vec_gw_energ, vec_omega_fit_gw, z_value, m_value, vec_sigma_c_gw, vec_sigma_x_minus_vxc_gw, eigenval, eigenval_scf, do_hedin_shift, n_level_gw, gw_corr_lev_occ, gw_corr_lev_vir, nparam_pade, num_fit_points, crossing_search, homo, fermi_level_offset, do_gw_im_time, print_self_energy, count_ev_sc_gw, vec_gw_dos, dos_lower_bound, dos_precision, ndos, min_level_self_energy, max_level_self_energy, dos_eta, dos_min, dos_max, e_fermi_ext)
perform analytic continuation with pade approximation
Definition rpa_gw.F:4314
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
Definition cell_types.F:60
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
Represent a complex full matrix.
keeps the information about the structure of a full matrix
represent a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
distributes pairs on a 2d grid of processors
Contains information about kpoints.
stores all the informations relevant to an mpi environment
Provides all information about a quickstep kind.