96#include "./base/base_uses.f90"
102 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'mp2_gpw'
127 SUBROUTINE mp2_gpw_main(qs_env, mp2_env, Emp2, Emp2_Cou, Emp2_EX, Emp2_S, Emp2_T, &
128 mos_mp2, para_env, unit_nr, calc_forces, calc_ex, do_ri_mp2, do_ri_rpa, &
129 do_ri_sos_laplace_mp2)
132 REAL(kind=
dp),
INTENT(OUT) :: emp2, emp2_cou, emp2_ex, emp2_s, emp2_t
133 TYPE(
mo_set_type),
DIMENSION(:),
INTENT(IN) :: mos_mp2
135 INTEGER,
INTENT(IN) :: unit_nr
136 LOGICAL,
INTENT(IN) :: calc_forces, calc_ex
137 LOGICAL,
INTENT(IN),
OPTIONAL :: do_ri_mp2, do_ri_rpa, &
138 do_ri_sos_laplace_mp2
140 CHARACTER(LEN=*),
PARAMETER :: routinen =
'mp2_gpw_main'
142 INTEGER :: blacs_grid_layout, bse_lev_virt, color_sub, dimen_ri, dimen_ri_red, eri_method, &
143 handle, ispin, local_unit_nr, my_group_l_end, my_group_l_size, my_group_l_start, nmo, &
144 nspins, potential_type, ri_metric_type
145 INTEGER,
ALLOCATABLE,
DIMENSION(:) :: ends_array_mc, ends_array_mc_block, gw_corr_lev_occ, &
146 gw_corr_lev_virt, homo, starts_array_mc, starts_array_mc_block
147 INTEGER,
DIMENSION(3) :: periodic
148 LOGICAL :: blacs_repeatable, do_bse, do_im_time, do_kpoints_cubic_rpa, my_do_gw, &
149 my_do_ri_mp2, my_do_ri_rpa, my_do_ri_sos_laplace_mp2
150 REAL(kind=
dp) :: emp2_ab, emp2_bb, emp2_cou_bb, &
151 emp2_ex_bb, eps_gvg_rspace_old, &
152 eps_pgf_orb_old, eps_rho_rspace_old
153 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :) :: eigenval
154 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :, :) :: bib_c_bse_ab, bib_c_bse_ij
155 REAL(kind=
dp),
DIMENSION(:),
POINTER :: mo_eigenvalues
158 DIMENSION(:, :, :) :: t_3c_o_ind
162 TYPE(
cp_fm_type),
ALLOCATABLE,
DIMENSION(:) :: mo_coeff
163 TYPE(
cp_fm_type),
ALLOCATABLE,
DIMENSION(:, :) :: fm_matrix_l_kpoints, fm_matrix_minv, &
164 fm_matrix_minv_l_kpoints, &
165 fm_matrix_minv_vtrunc_minv
169 TYPE(
dbcsr_p_type),
ALLOCATABLE,
DIMENSION(:) :: mo_coeff_all, mo_coeff_gw, mo_coeff_o, &
170 mo_coeff_o_bse, mo_coeff_v, &
173 TYPE(
dbcsr_p_type),
DIMENSION(:, :),
POINTER :: matrix_s_kp
174 TYPE(dbt_type) :: t_3c_m
175 TYPE(dbt_type),
ALLOCATABLE,
DIMENSION(:, :) :: t_3c_o
180 DIMENSION(:) :: gd_b_virtual
182 DIMENSION(:, :, :) :: t_3c_o_compressed
183 TYPE(
kpoint_type),
POINTER :: kpoints, kpoints_from_dft
187 POINTER :: sab_orb_sub
189 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
192 DIMENSION(:) :: bib_c, bib_c_gw
194 CALL timeset(routinen, handle)
197 my_do_ri_mp2 = .false.
198 IF (
PRESENT(do_ri_mp2)) my_do_ri_mp2 = do_ri_mp2
201 my_do_ri_rpa = .false.
202 IF (
PRESENT(do_ri_rpa)) my_do_ri_rpa = do_ri_rpa
205 my_do_ri_sos_laplace_mp2 = .false.
206 IF (
PRESENT(do_ri_sos_laplace_mp2)) my_do_ri_sos_laplace_mp2 = do_ri_sos_laplace_mp2
209 IF (my_do_ri_sos_laplace_mp2)
THEN
210 cpassert(.NOT. mp2_env%ri_rpa%do_ri_g0w0)
214 do_im_time = mp2_env%do_im_time
215 do_bse = qs_env%mp2_env%bse%do_bse
216 do_kpoints_cubic_rpa = qs_env%mp2_env%ri_rpa_im_time%do_im_time_kpoints
218 IF (do_kpoints_cubic_rpa .AND. mp2_env%ri_rpa%do_ri_g0w0)
THEN
219 cpabort(
"Full RPA k-points (DO_KPOINTS in LOW_SCALING section) not implemented with GW")
223 nspins =
SIZE(mos_mp2)
226 IF (do_kpoints_cubic_rpa)
THEN
227 CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, kpoints=kpoints_from_dft)
228 mos(1:nspins) => kpoints_from_dft%kp_env(1)%kpoint_env%mos(1:nspins, 1)
230 CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, mos=mos)
233 ALLOCATE (homo(nspins), eigenval(nmo, nspins), mo_coeff(nspins))
236 eigenvalues=mo_eigenvalues, homo=homo(ispin), &
237 mo_coeff=mo_coeff_ptr)
238 mo_coeff(ispin) = mo_coeff_ptr
239 eigenval(:, ispin) = mo_eigenvalues(1:nmo)
243 color_sub = para_env%mepos/mp2_env%mp2_num_proc
244 ALLOCATE (para_env_sub)
245 CALL para_env_sub%from_split(para_env, color_sub)
249 IF (para_env%is_source())
THEN
258 qs_kind_set=qs_kind_set, &
260 particle_set=particle_set, &
261 atomic_kind_set=atomic_kind_set, &
262 dft_control=dft_control, &
263 matrix_s_kp=matrix_s_kp)
265 CALL get_cell(cell=cell, periodic=periodic)
268 IF (mp2_env%ri_metric%potential_type ==
ri_default)
THEN
269 IF (sum(periodic) == 1 .OR. sum(periodic) == 3)
THEN
281 IF (mp2_env%ri_metric%potential_type ==
ri_default)
THEN
286 IF (sum(periodic) > 0) mp2_env%eri_method =
do_eri_gpw
287 IF (sum(periodic) == 0) mp2_env%eri_method =
do_eri_os
288 IF (sum(mp2_env%ri_rpa_im_time%kp_grid) > 0) mp2_env%eri_method =
do_eri_os
291 IF (mp2_env%ri_rpa_im_time%do_im_time_kpoints) mp2_env%eri_method =
do_eri_os
294 eri_method = mp2_env%eri_method
296 IF (unit_nr > 0 .AND. mp2_env%eri_method ==
do_eri_gpw)
THEN
297 WRITE (unit=unit_nr, fmt=
"(T3,A,T71,F10.1)") &
298 "GPW_INFO| Density cutoff [a.u.]:", mp2_env%mp2_gpw%cutoff*0.5_dp
299 WRITE (unit=unit_nr, fmt=
"(T3,A,T71,F10.1)") &
300 "GPW_INFO| Relative density cutoff [a.u.]:", mp2_env%mp2_gpw%relative_cutoff*0.5_dp
305 IF (.NOT. (mp2_env%ri_g0w0%print_local_bandgap .OR. mp2_env%bse%do_nto_analysis))
THEN
309 default_global_unit_nr=local_unit_nr, &
310 close_global_unit_on_dealloc=.false.)
311 CALL cp_logger_set(logger_sub, local_filename=
"MP2_localLog")
313 logger_sub%iter_info%print_level = mp2_env%mp2_gpw%print_level
319 blacs_repeatable = .true.
320 NULLIFY (blacs_env_sub)
325 blacs_env_sub_mat_munu => blacs_env_sub
327 matrix_s(1:1) => matrix_s_kp(1:1, 1)
329 CALL get_eps_old(dft_control, eps_pgf_orb_old, eps_rho_rspace_old, eps_gvg_rspace_old)
332 blacs_env_sub_mat_munu, do_alloc_blocks_from_nbl=.NOT. do_im_time, sab_orb_sub=sab_orb_sub, &
333 do_kpoints=mp2_env%ri_rpa_im_time%do_im_time_kpoints, &
334 dbcsr_sym_type=dbcsr_type_symmetric)
337 ri_metric_type = mp2_env%ri_metric%potential_type
340 potential_type = mp2_env%potential_parameter%potential_type
343 my_do_gw = mp2_env%ri_rpa%do_ri_g0w0
344 ALLOCATE (gw_corr_lev_occ(nspins), gw_corr_lev_virt(nspins))
345 gw_corr_lev_occ(1) = mp2_env%ri_g0w0%corr_mos_occ
346 gw_corr_lev_virt(1) = mp2_env%ri_g0w0%corr_mos_virt
347 IF (nspins == 2)
THEN
348 gw_corr_lev_occ(2) = mp2_env%ri_g0w0%corr_mos_occ_beta
349 gw_corr_lev_virt(2) = mp2_env%ri_g0w0%corr_mos_virt_beta
354 cpabort(
"BSE not implemented for open shell calculations")
359 bse_lev_virt = gw_corr_lev_virt(1)
363 ALLOCATE (mo_coeff_o(nspins), mo_coeff_v(nspins), mo_coeff_all(nspins), mo_coeff_gw(nspins))
366 ALLOCATE (mo_coeff_o_bse(1), mo_coeff_v_bse(1))
369 IF (.NOT. do_im_time)
THEN
376 CALL replicate_mat_to_subgroup(para_env, para_env_sub, mo_coeff(ispin), homo(ispin), mat_munu%matrix, &
377 mo_coeff_o(ispin)%matrix, mo_coeff_v(ispin)%matrix, &
378 mo_coeff_all(ispin)%matrix, mo_coeff_gw(ispin)%matrix, &
379 my_do_gw, gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), do_bse, &
380 bse_lev_virt, mo_coeff_o_bse(1)%matrix, mo_coeff_v_bse(1)%matrix, &
381 mp2_env%mp2_gpw%eps_filter)
390 IF (my_do_ri_mp2 .OR. my_do_ri_rpa .OR. my_do_ri_sos_laplace_mp2)
THEN
392 IF (nspins == 2)
THEN
395 bib_c, bib_c_gw, bib_c_bse_ij, bib_c_bse_ab, gd_array, gd_b_virtual, dimen_ri, dimen_ri_red, qs_env, &
396 para_env, para_env_sub, color_sub, cell, particle_set, &
397 atomic_kind_set, qs_kind_set, fm_matrix_pq, fm_matrix_l_kpoints, fm_matrix_minv_l_kpoints, &
398 fm_matrix_minv, fm_matrix_minv_vtrunc_minv, nmo, homo, mat_munu, sab_orb_sub, &
399 mo_coeff_o, mo_coeff_v, mo_coeff_all, mo_coeff_gw, mo_coeff_o_bse, mo_coeff_v_bse, &
400 mp2_env%mp2_gpw%eps_filter, unit_nr, &
401 mp2_env%mp2_memory, mp2_env%calc_PQ_cond_num, calc_forces, blacs_env_sub, my_do_gw .AND. .NOT. do_im_time, &
402 do_bse, gd_b_all, starts_array_mc, ends_array_mc, starts_array_mc_block, ends_array_mc_block, &
403 gw_corr_lev_occ(1), gw_corr_lev_virt(1), &
405 do_im_time, do_kpoints_cubic_rpa, kpoints, &
406 t_3c_m, t_3c_o, t_3c_o_compressed, t_3c_o_ind, &
408 gd_b_occ_bse, gd_b_virt_bse)
412 dimen_ri, dimen_ri_red, qs_env, para_env, para_env_sub, &
413 color_sub, cell, particle_set, &
414 atomic_kind_set, qs_kind_set, fm_matrix_pq, &
415 fm_matrix_l_kpoints, fm_matrix_minv_l_kpoints, &
416 fm_matrix_minv, fm_matrix_minv_vtrunc_minv, nmo, homo, &
417 mat_munu, sab_orb_sub, &
418 mo_coeff_o, mo_coeff_v, mo_coeff_all, mo_coeff_gw, mo_coeff_o_bse, mo_coeff_v_bse, &
419 mp2_env%mp2_gpw%eps_filter, unit_nr, &
420 mp2_env%mp2_memory, mp2_env%calc_PQ_cond_num, calc_forces, &
421 blacs_env_sub, my_do_gw .AND. .NOT. do_im_time, do_bse, gd_b_all, &
422 starts_array_mc, ends_array_mc, &
423 starts_array_mc_block, ends_array_mc_block, &
424 gw_corr_lev_occ(1), gw_corr_lev_virt(1), &
426 do_im_time, do_kpoints_cubic_rpa, kpoints, &
427 t_3c_m, t_3c_o, t_3c_o_compressed, t_3c_o_ind, &
428 mp2_env%ri_metric, gd_b_occ_bse, gd_b_virt_bse)
433 IF (nspins == 2)
THEN
435 IF (unit_nr > 0)
WRITE (unit_nr, *)
436 IF (unit_nr > 0)
WRITE (unit_nr,
'(T3,A)')
'Alpha (ia|'
438 emp2, emp2_cou, emp2_ex, qs_env, para_env, para_env_sub, color_sub, &
439 cell, particle_set, &
440 atomic_kind_set, qs_kind_set, eigenval, nmo, homo, mat_munu, &
441 sab_orb_sub, mo_coeff_o, mo_coeff_v, mp2_env%mp2_gpw%eps_filter, unit_nr, &
442 mp2_env%mp2_memory, calc_ex, blacs_env_sub, emp2_ab)
445 IF (unit_nr > 0)
WRITE (unit_nr, *)
446 IF (unit_nr > 0)
WRITE (unit_nr,
'(T3,A)')
'Beta (ia|'
448 emp2_bb, emp2_cou_bb, emp2_ex_bb, qs_env, para_env, para_env_sub, color_sub, cell, particle_set, &
449 atomic_kind_set, qs_kind_set, eigenval(:, 2:2), nmo, homo(2:2), mat_munu, &
450 sab_orb_sub, mo_coeff_o(2:2), mo_coeff_v(2:2), mp2_env%mp2_gpw%eps_filter, unit_nr, &
451 mp2_env%mp2_memory, calc_ex, blacs_env_sub)
454 emp2_cou = emp2_cou*0.25_dp
455 emp2_ex = emp2_ex*0.5_dp
457 emp2_cou_bb = emp2_cou_bb*0.25_dp
458 emp2_ex_bb = emp2_ex_bb*0.5_dp
461 emp2_t = emp2_cou + emp2_cou_bb + emp2_ex + emp2_ex_bb
463 emp2_cou = emp2_cou + emp2_cou_bb + emp2_ab
464 emp2_ex = emp2_ex + emp2_ex_bb
465 emp2 = emp2_ex + emp2_cou
470 emp2, emp2_cou, emp2_ex, qs_env, para_env, para_env_sub, color_sub, cell, particle_set, &
471 atomic_kind_set, qs_kind_set, eigenval(:, 1:1), nmo, homo(1:1), mat_munu, &
472 sab_orb_sub, mo_coeff_o(1:1), mo_coeff_v(1:1), mp2_env%mp2_gpw%eps_filter, unit_nr, &
473 mp2_env%mp2_memory, calc_ex, blacs_env_sub)
479 CALL dbcsr_clear_mempools()
481 IF (calc_forces .AND. .NOT. do_im_time)
THEN
483 ALLOCATE (mp2_env%ri_grad%mo_coeff_o(nspins), mp2_env%ri_grad%mo_coeff_v(nspins))
485 NULLIFY (mp2_env%ri_grad%mo_coeff_o(ispin)%matrix)
486 CALL dbcsr_init_p(mp2_env%ri_grad%mo_coeff_o(ispin)%matrix)
487 CALL dbcsr_copy(mp2_env%ri_grad%mo_coeff_o(ispin)%matrix, mo_coeff_o(ispin)%matrix, &
489 NULLIFY (mp2_env%ri_grad%mo_coeff_v(ispin)%matrix)
490 CALL dbcsr_init_p(mp2_env%ri_grad%mo_coeff_v(ispin)%matrix)
491 CALL dbcsr_copy(mp2_env%ri_grad%mo_coeff_v(ispin)%matrix, mo_coeff_v(ispin)%matrix, &
494 CALL get_group_dist(gd_array, color_sub, my_group_l_start, my_group_l_end, my_group_l_size)
498 ALLOCATE (mp2_env%ri_rpa%mo_coeff_o(nspins), mp2_env%ri_rpa%mo_coeff_v(nspins))
500 CALL dbcsr_copy(mp2_env%ri_rpa%mo_coeff_o(ispin), mo_coeff_o(ispin)%matrix, name=
"mo_coeff_o")
501 CALL dbcsr_copy(mp2_env%ri_rpa%mo_coeff_v(ispin), mo_coeff_v(ispin)%matrix, name=
"mo_coeff_v")
505 IF (.NOT. do_im_time)
THEN
509 DEALLOCATE (mo_coeff_o(ispin)%matrix)
511 DEALLOCATE (mo_coeff_v(ispin)%matrix)
514 DEALLOCATE (mo_coeff_all(ispin)%matrix)
517 DEALLOCATE (mo_coeff_o, mo_coeff_v)
518 IF (my_do_gw)
DEALLOCATE (mo_coeff_all)
524 DEALLOCATE (mo_coeff_o_bse(1)%matrix)
525 DEALLOCATE (mo_coeff_v_bse(1)%matrix)
527 DEALLOCATE (mo_coeff_o_bse, mo_coeff_v_bse)
530 IF (calc_forces .AND. do_im_time .OR. &
531 (.NOT. calc_forces .AND. mp2_env%ri_rpa%exchange_correction ==
rpa_exchange_none))
THEN
534 DEALLOCATE (mat_munu%matrix)
541 IF (my_do_ri_rpa .OR. my_do_ri_sos_laplace_mp2)
THEN
543 IF (do_im_time)
CALL create_matrix_p(mat_p_global, qs_env, mp2_env, para_env)
545 IF (.NOT.
ALLOCATED(bib_c))
ALLOCATE (bib_c(nspins))
546 IF (.NOT.
ALLOCATED(bib_c_gw))
ALLOCATE (bib_c_gw(nspins))
547 IF (.NOT.
ALLOCATED(gd_b_virtual))
ALLOCATE (gd_b_virtual(nspins))
550 CALL rpa_ri_compute_en(qs_env, emp2, mp2_env, bib_c, bib_c_gw, bib_c_bse_ij, bib_c_bse_ab, &
551 para_env, para_env_sub, color_sub, &
552 gd_array, gd_b_virtual, gd_b_all, gd_b_occ_bse, gd_b_virt_bse, &
553 mo_coeff, fm_matrix_pq, fm_matrix_l_kpoints, fm_matrix_minv_l_kpoints, &
554 fm_matrix_minv, fm_matrix_minv_vtrunc_minv, kpoints, &
555 eigenval, nmo, homo, dimen_ri, dimen_ri_red, gw_corr_lev_occ, gw_corr_lev_virt, &
557 unit_nr, my_do_ri_sos_laplace_mp2, my_do_gw, do_im_time, do_bse, matrix_s, &
558 mat_munu, mat_p_global, t_3c_m, t_3c_o, t_3c_o_compressed, t_3c_o_ind, &
559 starts_array_mc, ends_array_mc, &
560 starts_array_mc_block, ends_array_mc_block, calc_forces)
562 IF (mp2_env%ri_rpa%do_rse) &
563 CALL rse_energy(qs_env, mp2_env, para_env, dft_control, mo_coeff, homo, eigenval)
566 IF (
ASSOCIATED(mat_p_global%matrix))
THEN
568 DEALLOCATE (mat_p_global%matrix)
579 DEALLOCATE (mat_munu%matrix)
586 IF (my_do_ri_mp2)
THEN
593 emp2_cou, emp2_ex, emp2_s, emp2_t, bib_c, mp2_env, para_env, para_env_sub, color_sub, &
594 gd_array, gd_b_virtual, &
595 eigenval, nmo, homo, dimen_ri_red, unit_nr, calc_forces, calc_ex)
602 IF (calc_forces .AND. .NOT. do_im_time)
THEN
605 particle_set, atomic_kind_set, qs_kind_set, &
606 mo_coeff, dimen_ri, eigenval, &
607 my_group_l_start, my_group_l_end, my_group_l_size, &
608 sab_orb_sub, mat_munu, blacs_env_sub)
612 DEALLOCATE (mp2_env%ri_grad%mo_coeff_o(ispin)%matrix)
615 DEALLOCATE (mp2_env%ri_grad%mo_coeff_v(ispin)%matrix)
617 DEALLOCATE (mp2_env%ri_grad%mo_coeff_o, mp2_env%ri_grad%mo_coeff_v)
620 DEALLOCATE (mat_munu%matrix)
628 IF (my_do_gw .AND. .NOT. do_im_time)
THEN
631 DEALLOCATE (mo_coeff_gw(ispin)%matrix)
633 DEALLOCATE (mo_coeff_gw)
637 dft_control%qs_control%eps_pgf_orb = eps_pgf_orb_old
638 dft_control%qs_control%eps_rho_rspace = eps_rho_rspace_old
639 dft_control%qs_control%eps_gvg_rspace = eps_gvg_rspace_old
644 IF (.NOT. (mp2_env%ri_g0w0%print_local_bandgap .OR. mp2_env%bse%do_nto_analysis))
THEN
652 IF (calc_forces .AND. .NOT. do_im_time)
THEN
654 mo_coeff, homo, eigenval, unit_nr)
657 DEALLOCATE (eigenval, mo_coeff)
659 CALL timestop(handle)
683 SUBROUTINE replicate_mat_to_subgroup(para_env, para_env_sub, mo_coeff, homo, mat_munu, &
684 mo_coeff_o, mo_coeff_v, mo_coeff_all, mo_coeff_gw, my_do_gw, &
685 gw_corr_lev_occ, gw_corr_lev_virt, my_do_bse, &
686 bse_lev_virt, mo_coeff_o_bse, mo_coeff_v_bse, eps_filter)
689 INTEGER,
INTENT(IN) :: homo
691 TYPE(
dbcsr_type),
POINTER :: mo_coeff_o, mo_coeff_v, mo_coeff_all, &
693 LOGICAL,
INTENT(IN) :: my_do_gw
694 INTEGER,
INTENT(IN) :: gw_corr_lev_occ, gw_corr_lev_virt
695 LOGICAL,
INTENT(IN) :: my_do_bse
696 INTEGER,
INTENT(IN) :: bse_lev_virt
697 TYPE(
dbcsr_type),
POINTER :: mo_coeff_o_bse, mo_coeff_v_bse
698 REAL(kind=
dp),
INTENT(IN) :: eps_filter
700 CHARACTER(LEN=*),
PARAMETER :: routinen =
'replicate_mat_to_subgroup'
703 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :) :: c
706 CALL timeset(routinen, handle)
711 ALLOCATE (mo_coeff_o)
713 mat_munu, gd_array, eps_filter)
715 ALLOCATE (mo_coeff_v)
717 mat_munu, gd_array, eps_filter)
720 ALLOCATE (mo_coeff_gw)
721 CALL build_dbcsr_from_rows(para_env_sub, mo_coeff_gw, c(:, homo - gw_corr_lev_occ + 1:homo + gw_corr_lev_virt), &
722 mat_munu, gd_array, eps_filter)
725 ALLOCATE (mo_coeff_all)
727 mat_munu, gd_array, eps_filter)
733 ALLOCATE (mo_coeff_o_bse)
735 mat_munu, gd_array, eps_filter)
737 ALLOCATE (mo_coeff_v_bse)
739 mat_munu, gd_array, eps_filter)
745 CALL timestop(handle)
747 END SUBROUTINE replicate_mat_to_subgroup
761 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :), &
764 CHARACTER(LEN=*),
PARAMETER :: routinen =
'grep_rows_in_subgroups'
766 INTEGER :: handle, i_global, iib, j_global, jjb, max_row_col_local, my_mu_end, my_mu_size, &
767 my_mu_start, ncol_global, ncol_local, ncol_rec, nrow_global, nrow_local, nrow_rec, &
768 proc_receive_static, proc_send_static, proc_shift
769 INTEGER,
ALLOCATABLE,
DIMENSION(:, :) :: local_col_row_info, rec_col_row_info
770 INTEGER,
DIMENSION(:),
POINTER :: col_indices, col_indices_rec, &
771 row_indices, row_indices_rec
772 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :) :: local_c, rec_c
773 REAL(kind=
dp),
CONTIGUOUS,
DIMENSION(:, :), &
774 POINTER :: local_c_internal
776 CALL timeset(routinen, handle)
779 ncol_global=ncol_global, &
780 nrow_global=nrow_global, &
781 nrow_local=nrow_local, &
782 ncol_local=ncol_local, &
783 row_indices=row_indices, &
784 col_indices=col_indices, &
785 local_data=local_c_internal)
788 CALL get_group_dist(gd_array, para_env_sub%mepos, my_mu_start, my_mu_end, my_mu_size)
791 ALLOCATE (c(my_mu_size, ncol_global))
794 ALLOCATE (local_c(nrow_local, ncol_local))
795 local_c(:, :) = local_c_internal(1:nrow_local, 1:ncol_local)
796 NULLIFY (local_c_internal)
798 max_row_col_local = max(nrow_local, ncol_local)
799 CALL para_env%max(max_row_col_local)
801 ALLOCATE (local_col_row_info(0:max_row_col_local, 2))
802 local_col_row_info = 0
804 local_col_row_info(0, 1) = nrow_local
805 local_col_row_info(1:nrow_local, 1) = row_indices(1:nrow_local)
807 local_col_row_info(0, 2) = ncol_local
808 local_col_row_info(1:ncol_local, 2) = col_indices(1:ncol_local)
810 ALLOCATE (rec_col_row_info(0:max_row_col_local, 2))
813 DO iib = 1, nrow_local
814 i_global = row_indices(iib)
815 IF (i_global >= my_mu_start .AND. i_global <= my_mu_end)
THEN
816 DO jjb = 1, ncol_local
817 j_global = col_indices(jjb)
818 c(i_global - my_mu_start + 1, j_global) = local_c(iib, jjb)
824 proc_send_static =
modulo(para_env%mepos + 1, para_env%num_pe)
825 proc_receive_static =
modulo(para_env%mepos - 1, para_env%num_pe)
826 DO proc_shift = 1, para_env%num_pe - 1
829 CALL para_env%sendrecv(local_col_row_info, proc_send_static, rec_col_row_info, proc_receive_static)
830 nrow_rec = rec_col_row_info(0, 1)
831 ncol_rec = rec_col_row_info(0, 2)
833 ALLOCATE (row_indices_rec(nrow_rec))
834 row_indices_rec = rec_col_row_info(1:nrow_rec, 1)
836 ALLOCATE (col_indices_rec(ncol_rec))
837 col_indices_rec = rec_col_row_info(1:ncol_rec, 2)
839 ALLOCATE (rec_c(nrow_rec, ncol_rec))
843 CALL para_env%sendrecv(local_c, proc_send_static, rec_c, proc_receive_static)
847 i_global = row_indices_rec(iib)
848 IF (i_global >= my_mu_start .AND. i_global <= my_mu_end)
THEN
850 j_global = col_indices_rec(jjb)
851 c(i_global - my_mu_start + 1, j_global) = rec_c(iib, jjb)
856 local_col_row_info(:, :) = rec_col_row_info
858 ALLOCATE (local_c(nrow_rec, ncol_rec))
859 local_c(:, :) = rec_c
861 DEALLOCATE (col_indices_rec)
862 DEALLOCATE (row_indices_rec)
867 DEALLOCATE (local_col_row_info)
868 DEALLOCATE (rec_col_row_info)
870 CALL timestop(handle)
885 mat_munu, gd_array, eps_filter)
888 REAL(kind=
dp),
DIMENSION(:, :),
INTENT(IN) :: cread
891 REAL(kind=
dp),
INTENT(IN) :: eps_filter
893 CHARACTER(LEN=*),
PARAMETER :: routinen =
'build_dbcsr_from_rows'
895 INTEGER :: col, col_offset, col_size, handle, i, i_global, j, j_global, my_mu_end, &
896 my_mu_start, ncol_global, proc_receive, proc_send, proc_shift, rec_mu_end, rec_mu_size, &
897 rec_mu_start, row, row_offset, row_size
898 REAL(kind=
dp),
ALLOCATABLE,
DIMENSION(:, :) :: rec_c
899 REAL(kind=
dp),
DIMENSION(:, :),
POINTER :: data_block
902 CALL timeset(routinen, handle)
904 ncol_global =
SIZE(cread, 2)
906 CALL get_group_dist(gd_array, para_env_sub%mepos, my_mu_start, my_mu_end)
909 sym=dbcsr_type_no_symmetry)
916 row_size=row_size, col_size=col_size, &
917 row_offset=row_offset, col_offset=col_offset)
919 i_global = row_offset + i - 1
920 IF (i_global >= my_mu_start .AND. i_global <= my_mu_end)
THEN
922 j_global = col_offset + j - 1
923 data_block(i, j) = cread(i_global - my_mu_start + 1, col_offset + j - 1)
932 DO proc_shift = 1, para_env_sub%num_pe - 1
933 proc_send =
modulo(para_env_sub%mepos + proc_shift, para_env_sub%num_pe)
934 proc_receive =
modulo(para_env_sub%mepos - proc_shift, para_env_sub%num_pe)
936 CALL get_group_dist(gd_array, proc_receive, rec_mu_start, rec_mu_end, rec_mu_size)
938 ALLOCATE (rec_c(rec_mu_size, ncol_global))
942 CALL para_env_sub%sendrecv(cread, proc_send, rec_c, proc_receive)
948 row_size=row_size, col_size=col_size, &
949 row_offset=row_offset, col_offset=col_offset)
951 i_global = row_offset + i - 1
952 IF (i_global >= rec_mu_start .AND. i_global <= rec_mu_end)
THEN
954 j_global = col_offset + j - 1
955 data_block(i, j) = rec_c(i_global - rec_mu_start + 1, col_offset + j - 1)
967 CALL timestop(handle)
987 do_ri_aux_basis, do_mixed_basis, group_size_prim, &
988 do_alloc_blocks_from_nbl, do_kpoints, sab_orb_sub, dbcsr_sym_type)
992 REAL(kind=
dp) :: eps_grid
994 LOGICAL,
INTENT(IN),
OPTIONAL :: do_ri_aux_basis, do_mixed_basis
995 INTEGER,
INTENT(IN),
OPTIONAL :: group_size_prim
996 LOGICAL,
INTENT(IN),
OPTIONAL :: do_alloc_blocks_from_nbl, do_kpoints
998 OPTIONAL,
POINTER :: sab_orb_sub
999 CHARACTER,
OPTIONAL :: dbcsr_sym_type
1001 CHARACTER(LEN=*),
PARAMETER :: routinen =
'create_mat_munu'
1003 CHARACTER :: my_dbcsr_sym_type
1004 INTEGER :: handle, ikind, natom, nkind
1005 INTEGER,
DIMENSION(:),
POINTER :: col_blk_sizes, row_blk_sizes
1006 LOGICAL :: my_do_alloc_blocks_from_nbl, &
1007 my_do_kpoints, my_do_mixed_basis, &
1009 LOGICAL,
ALLOCATABLE,
DIMENSION(:) :: orb_present
1010 REAL(
dp),
ALLOCATABLE,
DIMENSION(:) :: orb_radius
1011 REAL(
dp),
ALLOCATABLE,
DIMENSION(:, :) :: pair_radius
1012 REAL(kind=
dp) :: subcells
1025 POINTER :: my_sab_orb_sub
1027 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
1029 CALL timeset(routinen, handle)
1031 NULLIFY (basis_set_ri_aux)
1033 my_do_ri_aux_basis = .false.
1034 IF (
PRESENT(do_ri_aux_basis))
THEN
1035 my_do_ri_aux_basis = do_ri_aux_basis
1038 my_do_mixed_basis = .false.
1039 IF (
PRESENT(do_mixed_basis))
THEN
1040 my_do_mixed_basis = do_mixed_basis
1043 my_do_alloc_blocks_from_nbl = .false.
1044 IF (
PRESENT(do_alloc_blocks_from_nbl))
THEN
1045 my_do_alloc_blocks_from_nbl = do_alloc_blocks_from_nbl
1048 my_do_kpoints = .false.
1049 IF (
PRESENT(do_kpoints))
THEN
1050 my_do_kpoints = do_kpoints
1053 my_dbcsr_sym_type = dbcsr_type_no_symmetry
1054 IF (
PRESENT(dbcsr_sym_type))
THEN
1055 my_dbcsr_sym_type = dbcsr_sym_type
1059 qs_kind_set=qs_kind_set, &
1061 particle_set=particle_set, &
1062 atomic_kind_set=atomic_kind_set, &
1063 molecule_set=molecule_set, &
1064 molecule_kind_set=molecule_kind_set, &
1065 dft_control=dft_control)
1067 IF (my_do_kpoints)
THEN
1069 IF (eps_grid < dft_control%qs_control%eps_pgf_orb)
THEN
1070 eps_grid = dft_control%qs_control%eps_pgf_orb
1071 cpwarn(
"WFC_GPW%EPS_GRID has been set to QS%EPS_PGF_ORB")
1076 dft_control%qs_control%eps_pgf_orb = eps_grid
1077 dft_control%qs_control%eps_rho_rspace = eps_grid
1078 dft_control%qs_control%eps_gvg_rspace = eps_grid
1082 NULLIFY (local_particles_sub, local_molecules_sub)
1084 particle_set=particle_set, &
1085 local_particles=local_particles_sub, &
1086 molecule_kind_set=molecule_kind_set, &
1087 molecule_set=molecule_set, &
1088 local_molecules=local_molecules_sub, &
1089 force_env_section=qs_env%input)
1092 NULLIFY (distribution_2d_sub)
1094 atomic_kind_set=atomic_kind_set, &
1095 qs_kind_set=qs_kind_set, &
1096 particle_set=particle_set, &
1097 molecule_kind_set=molecule_kind_set, &
1098 molecule_set=molecule_set, &
1099 distribution_2d=distribution_2d_sub, &
1100 blacs_env=blacs_env_sub, &
1101 force_env_section=qs_env%input)
1105 nkind =
SIZE(atomic_kind_set)
1106 ALLOCATE (atom2d(nkind))
1108 CALL atom2d_build(atom2d, local_particles_sub, distribution_2d_sub, atomic_kind_set, &
1109 molecule_set, molecule_only=.false., particle_set=particle_set)
1111 ALLOCATE (orb_present(nkind))
1112 ALLOCATE (orb_radius(nkind))
1113 ALLOCATE (pair_radius(nkind, nkind))
1116 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
1117 IF (
ASSOCIATED(orb_basis_set))
THEN
1118 orb_present(ikind) = .true.
1119 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
1121 orb_present(ikind) = .false.
1122 orb_radius(ikind) = 0.0_dp
1126 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
1128 IF (
PRESENT(sab_orb_sub))
THEN
1129 NULLIFY (sab_orb_sub)
1131 IF (my_do_kpoints)
THEN
1133 mic=.false., subcells=subcells, molecular=.false., nlname=
"sab_orb_sub", &
1137 mic=.false., subcells=subcells, molecular=.false., nlname=
"sab_orb_sub")
1140 NULLIFY (my_sab_orb_sub)
1142 IF (my_do_kpoints)
THEN
1144 mic=.false., subcells=subcells, molecular=.false., nlname=
"sab_orb_sub", &
1148 mic=.false., subcells=subcells, molecular=.false., nlname=
"sab_orb_sub")
1153 DEALLOCATE (orb_present, orb_radius, pair_radius)
1156 ALLOCATE (dbcsr_dist_sub)
1160 natom =
SIZE(particle_set)
1161 ALLOCATE (row_blk_sizes(natom))
1162 IF (my_do_ri_aux_basis)
THEN
1164 ALLOCATE (basis_set_ri_aux(nkind))
1166 CALL get_particle_set(particle_set, qs_kind_set, nsgf=row_blk_sizes, basis=basis_set_ri_aux)
1167 DEALLOCATE (basis_set_ri_aux)
1169 ELSE IF (my_do_mixed_basis)
THEN
1171 ALLOCATE (basis_set_ri_aux(nkind))
1173 CALL get_particle_set(particle_set, qs_kind_set, nsgf=row_blk_sizes, basis=basis_set_ri_aux)
1174 DEALLOCATE (basis_set_ri_aux)
1176 ALLOCATE (col_blk_sizes(natom))
1179 col_blk_sizes = col_blk_sizes*group_size_prim
1185 NULLIFY (mat_munu%matrix)
1186 ALLOCATE (mat_munu%matrix)
1188 IF (my_do_ri_aux_basis)
THEN
1192 dist=dbcsr_dist_sub, matrix_type=my_dbcsr_sym_type, &
1193 row_blk_size=row_blk_sizes, col_blk_size=row_blk_sizes)
1195 ELSE IF (my_do_mixed_basis)
THEN
1199 dist=dbcsr_dist_sub, matrix_type=my_dbcsr_sym_type, &
1200 row_blk_size=row_blk_sizes, col_blk_size=col_blk_sizes)
1206 dist=dbcsr_dist_sub, matrix_type=my_dbcsr_sym_type, &
1207 row_blk_size=row_blk_sizes, col_blk_size=row_blk_sizes)
1209 IF (my_do_alloc_blocks_from_nbl)
THEN
1211 IF (
PRESENT(sab_orb_sub))
THEN
1221 DEALLOCATE (row_blk_sizes)
1223 IF (my_do_mixed_basis)
THEN
1224 DEALLOCATE (col_blk_sizes)
1228 DEALLOCATE (dbcsr_dist_sub)
1235 IF (.NOT.
PRESENT(sab_orb_sub))
THEN
1239 CALL timestop(handle)
1250 SUBROUTINE create_matrix_p(mat_P_global, qs_env, mp2_env, para_env)
1257 CHARACTER(LEN=*),
PARAMETER :: routinen =
'create_matrix_P'
1259 INTEGER :: blacs_grid_layout, handle
1260 LOGICAL :: blacs_repeatable
1263 CALL timeset(routinen, handle)
1266 blacs_repeatable = .true.
1267 NULLIFY (blacs_env_global)
1269 blacs_grid_layout, &
1272 CALL create_mat_munu(mat_p_global, qs_env, mp2_env%mp2_gpw%eps_grid, &
1273 blacs_env_global, do_ri_aux_basis=.true., &
1274 do_kpoints=mp2_env%ri_rpa_im_time%do_im_time_kpoints)
1279 CALL timestop(handle)
1290 PURE SUBROUTINE get_eps_old(dft_control, eps_pgf_orb_old, eps_rho_rspace_old, eps_gvg_rspace_old)
1293 REAL(kind=
dp),
INTENT(OUT) :: eps_pgf_orb_old, eps_rho_rspace_old, &
1297 eps_pgf_orb_old = dft_control%qs_control%eps_pgf_orb
1298 eps_rho_rspace_old = dft_control%qs_control%eps_rho_rspace
1299 eps_gvg_rspace_old = dft_control%qs_control%eps_gvg_rspace
1301 END SUBROUTINE get_eps_old
static GRID_HOST_DEVICE int modulo(int a, int m)
Equivalent of Fortran's MODULO, which always return a positive number. https://gcc....
Define the atomic kind types and their sub types.
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
Handles all functions related to the CELL.
subroutine, public get_cell(cell, alpha, beta, gamma, deth, orthorhombic, abc, periodic, h, h_inv, symmetry_id, tag)
Get informations about a simulation cell.
methods related to the blacs parallel environment
integer, parameter, public blacs_grid_square
subroutine, public cp_blacs_env_release(blacs_env)
releases the given blacs_env
subroutine, public cp_blacs_env_create(blacs_env, para_env, blacs_grid_layout, blacs_repeatable, row_major, grid_2d)
allocates and initializes a type that represent a blacs context
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_distribution_release(dist)
...
subroutine, public dbcsr_iterator_next_block(iterator, row, column, block, block_number_argument_has_been_removed, row_size, col_size, row_offset, col_offset)
...
logical function, public dbcsr_iterator_blocks_left(iterator)
...
subroutine, public dbcsr_iterator_stop(iterator)
...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_init_p(matrix)
...
subroutine, public dbcsr_filter(matrix, eps)
...
subroutine, public dbcsr_iterator_start(iterator, matrix, shared, dynamic, dynamic_byrows)
...
subroutine, public dbcsr_release(matrix)
...
subroutine, public dbcsr_reserve_all_blocks(matrix)
Reserves all blocks.
Routines that link DBCSR and CP2K concepts together.
subroutine, public cp_dbcsr_alloc_block_from_nbl(matrix, sab_orb, desymmetrize)
allocate the blocks of a dbcsr based on the neighbor list
DBCSR operations in CP2K.
subroutine, public cp_dbcsr_dist2d_to_dist(dist2d, dist)
Creates a DBCSR distribution from a distribution_2d.
subroutine, public cp_dbcsr_m_by_n_from_row_template(matrix, template, n, sym)
Utility function to create dbcsr matrix, m x n matrix (n arbitrary) with the same processor grid and ...
represent a full matrix distributed on many processors
subroutine, public cp_fm_get_info(matrix, name, nrow_global, ncol_global, nrow_block, ncol_block, nrow_local, ncol_local, row_indices, col_indices, local_data, context, nrow_locals, ncol_locals, matrix_struct, para_env)
returns all kind of information about the full matrix
various routines to log and control the output. The idea is that decisions about where to log should ...
recursive integer function, public cp_logger_get_default_unit_nr(logger, local, skip_not_ionode)
asks the default unit number of the given logger. try to use cp_logger_get_unit_nr
subroutine, public cp_logger_set(logger, local_filename, global_filename)
sets various attributes of the given logger
subroutine, public cp_rm_default_logger()
the cousin of cp_add_default_logger, decrements the stack, so that the default logger is what it has ...
subroutine, public cp_logger_release(logger)
releases this logger
subroutine, public cp_logger_create(logger, para_env, print_level, default_global_unit_nr, default_local_unit_nr, global_filename, local_filename, close_global_unit_on_dealloc, iter_info, close_local_unit_on_dealloc, suffix, template_logger)
initializes a logger
subroutine, public cp_add_default_logger(logger)
adds a default logger. MUST be called before logging occours
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
This is the start of a dbt_api, all publically needed functions are exported here....
stores a lists of integer that are local to a processor. The idea is that these integers represent ob...
subroutine, public distribution_1d_release(distribution_1d)
releases the given distribution_1d
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
subroutine, public distribution_2d_release(distribution_2d)
...
Distribution methods for atoms, particles, or molecules.
subroutine, public distribute_molecules_1d(atomic_kind_set, particle_set, local_particles, molecule_kind_set, molecule_set, local_molecules, force_env_section, prev_molecule_kind_set, prev_local_molecules)
Distribute molecules and particles.
subroutine, public distribute_molecules_2d(cell, atomic_kind_set, particle_set, qs_kind_set, molecule_kind_set, molecule_set, distribution_2d, blacs_env, force_env_section)
Distributes the particle pairs creating a 2d distribution optimally suited for quickstep.
Types to describe group distributions.
Types and set/get functions for HFX.
Defines the basic variable types.
integer, parameter, public dp
Types and basic routines needed for a kpoint calculation.
Interface to the Libint-Library or a c++ wrapper.
subroutine, public cp_libint_static_cleanup()
subroutine, public cp_libint_static_init()
Machine interface based on Fortran 2003 and POSIX.
integer, parameter, public default_output_unit
subroutine, public m_flush(lunit)
flushes units if the &GLOBAL flag is set accordingly
Interface to the message passing library MPI.
subroutine, public mp_para_env_release(para_env)
releases the para object (to be called when you don't want anymore the shared copy of this object)
Define the molecule kind structure types and the corresponding functionality.
Define the data structure for the molecule information.
Routines to calculate CPHF like update and solve Z-vector equation for MP2 gradients (only GPW)
subroutine, public solve_z_vector_eq(qs_env, mp2_env, para_env, dft_control, mo_coeff, homo, eigenval, unit_nr)
Solve Z-vector equations necessary for the calculation of the MP2 gradients, in order to be consisten...
Routines to calculate MP2 energy using GPW method.
subroutine, public mp2_gpw_compute(emp2, emp2_cou, emp2_ex, qs_env, para_env, para_env_sub, color_sub, cell, particle_set, atomic_kind_set, qs_kind_set, eigenval, nmo, homo, mat_munu, sab_orb_sub, mo_coeff_o, mo_coeff_v, eps_filter, unit_nr, mp2_memory, calc_ex, blacs_env_sub, emp2_ab)
...
Calls routines to get RI integrals and calculate total energies.
subroutine, public mp2_gpw_main(qs_env, mp2_env, emp2, emp2_cou, emp2_ex, emp2_s, emp2_t, mos_mp2, para_env, unit_nr, calc_forces, calc_ex, do_ri_mp2, do_ri_rpa, do_ri_sos_laplace_mp2)
with a big bang to mp2
subroutine, public grep_rows_in_subgroups(para_env, para_env_sub, mo_coeff, gd_array, c)
...
subroutine, public build_dbcsr_from_rows(para_env_sub, mo_coeff_to_build, cread, mat_munu, gd_array, eps_filter)
Encapsulate the building of dbcsr_matrices mo_coeff_(v,o,all)
subroutine, public create_mat_munu(mat_munu, qs_env, eps_grid, blacs_env_sub, do_ri_aux_basis, do_mixed_basis, group_size_prim, do_alloc_blocks_from_nbl, do_kpoints, sab_orb_sub, dbcsr_sym_type)
Encapsulate the building of dbcsr_matrix mat_munu.
Routines to calculate and distribute 2c- and 3c- integrals for RI.
subroutine, public mp2_ri_gpw_compute_in(bib_c, bib_c_gw, bib_c_bse_ij, bib_c_bse_ab, gd_array, gd_b_virtual, dimen_ri, dimen_ri_red, qs_env, para_env, para_env_sub, color_sub, cell, particle_set, atomic_kind_set, qs_kind_set, fm_matrix_pq, fm_matrix_l_kpoints, fm_matrix_minv_l_kpoints, fm_matrix_minv, fm_matrix_minv_vtrunc_minv, nmo, homo, mat_munu, sab_orb_sub, mo_coeff_o, mo_coeff_v, mo_coeff_all, mo_coeff_gw, mo_coeff_o_bse, mo_coeff_v_bse, eps_filter, unit_nr, mp2_memory, calc_pq_cond_num, calc_forces, blacs_env_sub, my_do_gw, do_bse, gd_b_all, starts_array_mc, ends_array_mc, starts_array_mc_block, ends_array_mc_block, gw_corr_lev_occ, gw_corr_lev_virt, bse_lev_virt, do_im_time, do_kpoints_cubic_rpa, kpoints, t_3c_m, t_3c_o, t_3c_o_compressed, t_3c_o_ind, ri_metric, gd_b_occ_bse, gd_b_virt_bse)
with ri mp2 gpw
Routines to calculate RI-GPW-MP2 energy using pw.
subroutine, public mp2_ri_gpw_compute_en(emp2_cou, emp2_ex, emp2_s, emp2_t, bib_c, mp2_env, para_env, para_env_sub, color_sub, gd_array, gd_b_virtual, eigenval, nmo, homo, dimen_ri, unit_nr, calc_forces, calc_ex)
...
Routines to calculate gradients of RI-GPW-MP2 energy using pw.
subroutine, public calc_ri_mp2_nonsep(qs_env, mp2_env, para_env, para_env_sub, cell, particle_set, atomic_kind_set, qs_kind_set, mo_coeff, dimen_ri, eigenval, my_group_l_start, my_group_l_end, my_group_l_size, sab_orb_sub, mat_munu, blacs_env_sub)
Calculate the non-separable part of the gradients and update the Lagrangian.
Types needed for MP2 calculations.
Define methods related to particle_type.
subroutine, public get_particle_set(particle_set, qs_kind_set, first_sgf, last_sgf, nsgf, nmao, basis)
Get the components of a particle set.
Define the data structure for the particle information.
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs, do_rixs, tb_tblite)
Get the QUICKSTEP environment.
Some utility functions for the calculation of integrals.
subroutine, public basis_set_list_setup(basis_set_list, basis_type, qs_kind_set)
Set up an easy accessible list of the basis sets for all kinds.
Calculate the interaction radii for the operator matrix calculation.
subroutine, public init_interaction_radii(qs_control, qs_kind_set)
Initialize all the atomic kind radii for a given threshold value.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
Definition and initialisation of the mo data type.
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
Define the neighbor list data types and the corresponding functionality.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
Generate the atomic neighbor lists.
subroutine, public atom2d_cleanup(atom2d)
free the internals of atom2d
subroutine, public pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
...
subroutine, public build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, mic, symmetric, molecular, subset_of_mol, current_subset, operator_type, nlname, atomb_to_keep)
Build simple pair neighbor lists.
subroutine, public atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, molecule_set, molecule_only, particle_set)
Build some distribution structure of atoms, refactored from build_qs_neighbor_lists.
Routines to calculate RI-RPA energy.
subroutine, public rpa_ri_compute_en(qs_env, erpa, mp2_env, bib_c, bib_c_gw, bib_c_bse_ij, bib_c_bse_ab, para_env, para_env_sub, color_sub, gd_array, gd_b_virtual, gd_b_all, gd_b_occ_bse, gd_b_virt_bse, mo_coeff, fm_matrix_pq, fm_matrix_l_kpoints, fm_matrix_minv_l_kpoints, fm_matrix_minv, fm_matrix_minv_vtrunc_minv, kpoints, eigenval, nmo, homo, dimen_ri, dimen_ri_red, gw_corr_lev_occ, gw_corr_lev_virt, bse_lev_virt, unit_nr, do_ri_sos_laplace_mp2, my_do_gw, do_im_time, do_bse, matrix_s, mat_munu, mat_p_global, t_3c_m, t_3c_o, t_3c_o_compressed, t_3c_o_ind, starts_array_mc, ends_array_mc, starts_array_mc_block, ends_array_mc_block, calc_forces)
...
Routines to compute singles correction to RPA (RSE)
subroutine, public rse_energy(qs_env, mp2_env, para_env, dft_control, mo_coeff, homo, eigenval)
Single excitations energy corrections for RPA.
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
type of a logger, at the moment it contains just a print level starting at which level it should be l...
structure to store local (to a processor) ordered lists of integers.
distributes pairs on a 2d grid of processors
Contains information about kpoints.
stores all the informations relevant to an mpi environment
Provides all information about a quickstep kind.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...