(git:d18deda)
Loading...
Searching...
No Matches
dbm_multiply_comm.c
Go to the documentation of this file.
1/*----------------------------------------------------------------------------*/
2/* CP2K: A general program to perform molecular dynamics simulations */
3/* Copyright 2000-2025 CP2K developers group <https://cp2k.org> */
4/* */
5/* SPDX-License-Identifier: BSD-3-Clause */
6/*----------------------------------------------------------------------------*/
7
8#include "dbm_multiply_comm.h"
9
10#include <assert.h>
11#include <stdlib.h>
12#include <string.h>
13
14#include "dbm_hyperparams.h"
15#include "dbm_mempool.h"
16#include "dbm_mpi.h"
17
18/*******************************************************************************
19 * \brief Private routine for computing greatest common divisor of two numbers.
20 * \author Ole Schuett
21 ******************************************************************************/
22static int gcd(const int a, const int b) {
23 if (a == 0)
24 return b;
25 return gcd(b % a, a); // Euclid's algorithm.
26}
27
28/*******************************************************************************
29 * \brief Private routine for computing least common multiple of two numbers.
30 * \author Ole Schuett
31 ******************************************************************************/
32static int lcm(const int a, const int b) { return (a * b) / gcd(a, b); }
33
34/*******************************************************************************
35 * \brief Private routine for computing the sum of the given integers.
36 * \author Ole Schuett
37 ******************************************************************************/
38static inline int isum(const int n, const int input[n]) {
39 int output = 0;
40 for (int i = 0; i < n; i++) {
41 output += input[i];
42 }
43 return output;
44}
45
46/*******************************************************************************
47 * \brief Private routine for computing the cumulative sums of given numbers.
48 * \author Ole Schuett
49 ******************************************************************************/
50static inline void icumsum(const int n, const int input[n], int output[n]) {
51 output[0] = 0;
52 for (int i = 1; i < n; i++) {
53 output[i] = output[i - 1] + input[i - 1];
54 }
55}
56
57/*******************************************************************************
58 * \brief Private struct used for planing during pack_matrix.
59 * \author Ole Schuett
60 ******************************************************************************/
61typedef struct {
62 const dbm_block_t *blk; // source block
63 int rank; // target mpi rank
66} plan_t;
67
68/*******************************************************************************
69 * \brief Private routine for planing packs.
70 * \author Ole Schuett
71 ******************************************************************************/
72static void create_pack_plans(const bool trans_matrix, const bool trans_dist,
73 const dbm_matrix_t *matrix,
74 const dbm_mpi_comm_t comm,
75 const dbm_dist_1d_t *dist_indices,
76 const dbm_dist_1d_t *dist_ticks, const int nticks,
77 const int npacks, plan_t *plans_per_pack[npacks],
78 int nblks_per_pack[npacks],
79 int ndata_per_pack[npacks]) {
80
81 memset(nblks_per_pack, 0, npacks * sizeof(int));
82 memset(ndata_per_pack, 0, npacks * sizeof(int));
83
84#pragma omp parallel
85 {
86 // 1st pass: Compute number of blocks that will be send in each pack.
87 int nblks_mythread[npacks];
88 memset(nblks_mythread, 0, npacks * sizeof(int));
89#pragma omp for schedule(static)
90 for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
91 dbm_shard_t *shard = &matrix->shards[ishard];
92 for (int iblock = 0; iblock < shard->nblocks; iblock++) {
93 const dbm_block_t *blk = &shard->blocks[iblock];
94 const int sum_index = (trans_matrix) ? blk->row : blk->col;
95 const int itick = (1021 * sum_index) % nticks; // 1021 = a random prime
96 const int ipack = itick / dist_ticks->nranks;
97 nblks_mythread[ipack]++;
98 }
99 }
100
101 // Sum nblocks across threads and allocate arrays for plans.
102#pragma omp critical
103 for (int ipack = 0; ipack < npacks; ipack++) {
104 nblks_per_pack[ipack] += nblks_mythread[ipack];
105 nblks_mythread[ipack] = nblks_per_pack[ipack];
106 }
107#pragma omp barrier
108#pragma omp for
109 for (int ipack = 0; ipack < npacks; ipack++) {
110 plans_per_pack[ipack] = malloc(nblks_per_pack[ipack] * sizeof(plan_t));
111 assert(plans_per_pack[ipack] != NULL);
112 }
113
114 // 2nd pass: Plan where to send each block.
115 int ndata_mythread[npacks];
116 memset(ndata_mythread, 0, npacks * sizeof(int));
117#pragma omp for schedule(static) // Need static to match previous loop.
118 for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
119 dbm_shard_t *shard = &matrix->shards[ishard];
120 for (int iblock = 0; iblock < shard->nblocks; iblock++) {
121 const dbm_block_t *blk = &shard->blocks[iblock];
122 const int free_index = (trans_matrix) ? blk->col : blk->row;
123 const int sum_index = (trans_matrix) ? blk->row : blk->col;
124 const int itick = (1021 * sum_index) % nticks; // Same mapping as above.
125 const int ipack = itick / dist_ticks->nranks;
126 // Compute rank to which this block should be sent.
127 const int coord_free_idx = dist_indices->index2coord[free_index];
128 const int coord_sum_idx = itick % dist_ticks->nranks;
129 const int coords[2] = {(trans_dist) ? coord_sum_idx : coord_free_idx,
130 (trans_dist) ? coord_free_idx : coord_sum_idx};
131 const int rank = dbm_mpi_cart_rank(comm, coords);
132 const int row_size = matrix->row_sizes[blk->row];
133 const int col_size = matrix->col_sizes[blk->col];
134 ndata_mythread[ipack] += row_size * col_size;
135 // Create plan.
136 const int iplan = --nblks_mythread[ipack];
137 plans_per_pack[ipack][iplan].blk = blk;
138 plans_per_pack[ipack][iplan].rank = rank;
139 plans_per_pack[ipack][iplan].row_size = row_size;
140 plans_per_pack[ipack][iplan].col_size = col_size;
141 }
142 }
143#pragma omp critical
144 for (int ipack = 0; ipack < npacks; ipack++) {
145 ndata_per_pack[ipack] += ndata_mythread[ipack];
146 }
147 } // end of omp parallel region
148}
149
150/*******************************************************************************
151 * \brief Private routine for filling send buffers.
152 * \author Ole Schuett
153 ******************************************************************************/
155 const dbm_matrix_t *matrix, const bool trans_matrix, const int nblks_send,
156 const int ndata_send, plan_t plans[nblks_send], const int nranks,
157 int blks_send_count[nranks], int data_send_count[nranks],
158 int blks_send_displ[nranks], int data_send_displ[nranks],
159 dbm_pack_block_t blks_send[nblks_send], double data_send[ndata_send]) {
160
161 memset(blks_send_count, 0, nranks * sizeof(int));
162 memset(data_send_count, 0, nranks * sizeof(int));
163
164#pragma omp parallel
165 {
166 // 3th pass: Compute per rank nblks and ndata.
167 int nblks_mythread[nranks], ndata_mythread[nranks];
168 memset(nblks_mythread, 0, nranks * sizeof(int));
169 memset(ndata_mythread, 0, nranks * sizeof(int));
170#pragma omp for schedule(static)
171 for (int iblock = 0; iblock < nblks_send; iblock++) {
172 const plan_t *plan = &plans[iblock];
173 nblks_mythread[plan->rank] += 1;
174 ndata_mythread[plan->rank] += plan->row_size * plan->col_size;
175 }
176
177 // Sum nblks and ndata across threads.
178#pragma omp critical
179 for (int irank = 0; irank < nranks; irank++) {
180 blks_send_count[irank] += nblks_mythread[irank];
181 data_send_count[irank] += ndata_mythread[irank];
182 nblks_mythread[irank] = blks_send_count[irank];
183 ndata_mythread[irank] = data_send_count[irank];
184 }
185#pragma omp barrier
186
187 // Compute send displacements.
188#pragma omp master
189 {
190 icumsum(nranks, blks_send_count, blks_send_displ);
191 icumsum(nranks, data_send_count, data_send_displ);
192 const int m = nranks - 1;
193 assert(nblks_send == blks_send_displ[m] + blks_send_count[m]);
194 assert(ndata_send == data_send_displ[m] + data_send_count[m]);
195 }
196#pragma omp barrier
197
198 // 4th pass: Fill blks_send and data_send arrays.
199#pragma omp for schedule(static) // Need static to match previous loop.
200 for (int iblock = 0; iblock < nblks_send; iblock++) {
201 const plan_t *plan = &plans[iblock];
202 const dbm_block_t *blk = plan->blk;
203 const int ishard = dbm_get_shard_index(matrix, blk->row, blk->col);
204 const dbm_shard_t *shard = &matrix->shards[ishard];
205 const double *blk_data = &shard->data[blk->offset];
206 const int row_size = plan->row_size, col_size = plan->col_size;
207 const int plan_size = row_size * col_size;
208 const int irank = plan->rank;
209
210 // The blk_send_data is ordered by rank, thread, and block.
211 // data_send_displ[irank]: Start of data for irank within blk_send_data.
212 // ndata_mythread[irank]: Current threads offset within data for irank.
213 nblks_mythread[irank] -= 1;
214 ndata_mythread[irank] -= plan_size;
215 const int offset = data_send_displ[irank] + ndata_mythread[irank];
216 const int jblock = blks_send_displ[irank] + nblks_mythread[irank];
217
218 double norm = 0.0; // Compute norm as double...
219 if (trans_matrix) {
220 // Transpose block to allow for outer-product style multiplication.
221 for (int i = 0; i < row_size; i++) {
222 for (int j = 0; j < col_size; j++) {
223 const double element = blk_data[j * row_size + i];
224 data_send[offset + i * col_size + j] = element;
225 norm += element * element;
226 }
227 }
228 blks_send[jblock].free_index = plan->blk->col;
229 blks_send[jblock].sum_index = plan->blk->row;
230 } else {
231 for (int i = 0; i < plan_size; i++) {
232 const double element = blk_data[i];
233 data_send[offset + i] = element;
234 norm += element * element;
235 }
236 blks_send[jblock].free_index = plan->blk->row;
237 blks_send[jblock].sum_index = plan->blk->col;
238 }
239 blks_send[jblock].norm = (float)norm; // ...store norm as float.
240
241 // After the block exchange data_recv_displ will be added to the offsets.
242 blks_send[jblock].offset = offset - data_send_displ[irank];
243 }
244 } // end of omp parallel region
245}
246
247/*******************************************************************************
248 * \brief Private comperator passed to qsort to compare two blocks by sum_index.
249 * \author Ole Schuett
250 ******************************************************************************/
251static int compare_pack_blocks_by_sum_index(const void *a, const void *b) {
252 const dbm_pack_block_t *blk_a = (const dbm_pack_block_t *)a;
253 const dbm_pack_block_t *blk_b = (const dbm_pack_block_t *)b;
254 return blk_a->sum_index - blk_b->sum_index;
255}
256
257/*******************************************************************************
258 * \brief Private routine for post-processing received blocks.
259 * \author Ole Schuett
260 ******************************************************************************/
262 const int nranks, const int nshards, const int nblocks_recv,
263 const int blks_recv_count[nranks], const int blks_recv_displ[nranks],
264 const int data_recv_displ[nranks],
265 dbm_pack_block_t blks_recv[nblocks_recv]) {
266
267 int nblocks_per_shard[nshards], shard_start[nshards];
268 memset(nblocks_per_shard, 0, nshards * sizeof(int));
269 dbm_pack_block_t *blocks_tmp =
270 malloc(nblocks_recv * sizeof(dbm_pack_block_t));
271 assert(blocks_tmp != NULL);
272
273#pragma omp parallel
274 {
275 // Add data_recv_displ to recveived block offsets.
276 for (int irank = 0; irank < nranks; irank++) {
277#pragma omp for
278 for (int i = 0; i < blks_recv_count[irank]; i++) {
279 blks_recv[blks_recv_displ[irank] + i].offset += data_recv_displ[irank];
280 }
281 }
282
283 // First use counting sort to group blocks by their free_index shard.
284 int nblocks_mythread[nshards];
285 memset(nblocks_mythread, 0, nshards * sizeof(int));
286#pragma omp for schedule(static)
287 for (int iblock = 0; iblock < nblocks_recv; iblock++) {
288 blocks_tmp[iblock] = blks_recv[iblock];
289 const int ishard = blks_recv[iblock].free_index % nshards;
290 nblocks_mythread[ishard]++;
291 }
292#pragma omp critical
293 for (int ishard = 0; ishard < nshards; ishard++) {
294 nblocks_per_shard[ishard] += nblocks_mythread[ishard];
295 nblocks_mythread[ishard] = nblocks_per_shard[ishard];
296 }
297#pragma omp barrier
298#pragma omp master
299 icumsum(nshards, nblocks_per_shard, shard_start);
300#pragma omp barrier
301#pragma omp for schedule(static) // Need static to match previous loop.
302 for (int iblock = 0; iblock < nblocks_recv; iblock++) {
303 const int ishard = blocks_tmp[iblock].free_index % nshards;
304 const int jblock = --nblocks_mythread[ishard] + shard_start[ishard];
305 blks_recv[jblock] = blocks_tmp[iblock];
306 }
307
308 // Then sort blocks within each shard by their sum_index.
309#pragma omp for
310 for (int ishard = 0; ishard < nshards; ishard++) {
311 if (nblocks_per_shard[ishard] > 1) {
312 qsort(&blks_recv[shard_start[ishard]], nblocks_per_shard[ishard],
314 }
315 }
316 } // end of omp parallel region
317
318 free(blocks_tmp);
319}
320
321/*******************************************************************************
322 * \brief Private routine for redistributing a matrix along selected dimensions.
323 * \author Ole Schuett
324 ******************************************************************************/
325static dbm_packed_matrix_t pack_matrix(const bool trans_matrix,
326 const bool trans_dist,
327 const dbm_matrix_t *matrix,
328 const dbm_distribution_t *dist,
329 const int nticks) {
330
331 assert(dbm_mpi_comms_are_similar(matrix->dist->comm, dist->comm));
332
333 // The row/col indicies are distributed along one cart dimension and the
334 // ticks are distributed along the other cart dimension.
335 const dbm_dist_1d_t *dist_indices = (trans_dist) ? &dist->cols : &dist->rows;
336 const dbm_dist_1d_t *dist_ticks = (trans_dist) ? &dist->rows : &dist->cols;
337
338 // Allocate packed matrix.
339 const int nsend_packs = nticks / dist_ticks->nranks;
340 assert(nsend_packs * dist_ticks->nranks == nticks);
341 dbm_packed_matrix_t packed;
342 packed.dist_indices = dist_indices;
343 packed.dist_ticks = dist_ticks;
344 packed.nsend_packs = nsend_packs;
345 packed.send_packs = malloc(nsend_packs * sizeof(dbm_pack_t));
346 assert(packed.send_packs != NULL);
347
348 // Plan all packs.
349 plan_t *plans_per_pack[nsend_packs];
350 int nblks_send_per_pack[nsend_packs], ndata_send_per_pack[nsend_packs];
351 create_pack_plans(trans_matrix, trans_dist, matrix, dist->comm, dist_indices,
352 dist_ticks, nticks, nsend_packs, plans_per_pack,
353 nblks_send_per_pack, ndata_send_per_pack);
354
355 // Allocate send buffers for maximum number of blocks/data over all packs.
356 int nblks_send_max = 0, ndata_send_max = 0;
357 for (int ipack = 0; ipack < nsend_packs; ++ipack) {
358 nblks_send_max = imax(nblks_send_max, nblks_send_per_pack[ipack]);
359 ndata_send_max = imax(ndata_send_max, ndata_send_per_pack[ipack]);
360 }
361 dbm_pack_block_t *blks_send =
362 dbm_mpi_alloc_mem(nblks_send_max * sizeof(dbm_pack_block_t));
363 double *data_send = dbm_mpi_alloc_mem(ndata_send_max * sizeof(double));
364
365 // Cannot parallelize over packs (there might be too few of them).
366 for (int ipack = 0; ipack < nsend_packs; ipack++) {
367 // Fill send buffers according to plans.
368 const int nranks = dist->nranks;
369 int blks_send_count[nranks], data_send_count[nranks];
370 int blks_send_displ[nranks], data_send_displ[nranks];
371 fill_send_buffers(matrix, trans_matrix, nblks_send_per_pack[ipack],
372 ndata_send_per_pack[ipack], plans_per_pack[ipack], nranks,
373 blks_send_count, data_send_count, blks_send_displ,
374 data_send_displ, blks_send, data_send);
375 free(plans_per_pack[ipack]);
376
377 // 1st communication: Exchange block counts.
378 int blks_recv_count[nranks], blks_recv_displ[nranks];
379 dbm_mpi_alltoall_int(blks_send_count, 1, blks_recv_count, 1, dist->comm);
380 icumsum(nranks, blks_recv_count, blks_recv_displ);
381 const int nblocks_recv = isum(nranks, blks_recv_count);
382
383 // 2nd communication: Exchange blocks.
384 dbm_pack_block_t *blks_recv =
385 dbm_mpi_alloc_mem(nblocks_recv * sizeof(dbm_pack_block_t));
386 int blks_send_count_byte[nranks], blks_send_displ_byte[nranks];
387 int blks_recv_count_byte[nranks], blks_recv_displ_byte[nranks];
388 for (int i = 0; i < nranks; i++) { // TODO: this is ugly!
389 blks_send_count_byte[i] = blks_send_count[i] * sizeof(dbm_pack_block_t);
390 blks_send_displ_byte[i] = blks_send_displ[i] * sizeof(dbm_pack_block_t);
391 blks_recv_count_byte[i] = blks_recv_count[i] * sizeof(dbm_pack_block_t);
392 blks_recv_displ_byte[i] = blks_recv_displ[i] * sizeof(dbm_pack_block_t);
393 }
395 blks_send, blks_send_count_byte, blks_send_displ_byte, blks_recv,
396 blks_recv_count_byte, blks_recv_displ_byte, dist->comm);
397
398 // 3rd communication: Exchange data counts.
399 // TODO: could be computed from blks_recv.
400 int data_recv_count[nranks], data_recv_displ[nranks];
401 dbm_mpi_alltoall_int(data_send_count, 1, data_recv_count, 1, dist->comm);
402 icumsum(nranks, data_recv_count, data_recv_displ);
403 const int ndata_recv = isum(nranks, data_recv_count);
404
405 // 4th communication: Exchange data.
406 double *data_recv = dbm_mempool_host_malloc(ndata_recv * sizeof(double));
407 dbm_mpi_alltoallv_double(data_send, data_send_count, data_send_displ,
408 data_recv, data_recv_count, data_recv_displ,
409 dist->comm);
410
411 // Post-process received blocks and assemble them into a pack.
412 postprocess_received_blocks(nranks, dist_indices->nshards, nblocks_recv,
413 blks_recv_count, blks_recv_displ,
414 data_recv_displ, blks_recv);
415 packed.send_packs[ipack].nblocks = nblocks_recv;
416 packed.send_packs[ipack].data_size = ndata_recv;
417 packed.send_packs[ipack].blocks = blks_recv;
418 packed.send_packs[ipack].data = data_recv;
419 }
420
421 // Deallocate send buffers.
422 dbm_mpi_free_mem(blks_send);
423 dbm_mpi_free_mem(data_send);
424
425 // Allocate pack_recv.
426 int max_nblocks = 0, max_data_size = 0;
427 for (int ipack = 0; ipack < packed.nsend_packs; ipack++) {
428 max_nblocks = imax(max_nblocks, packed.send_packs[ipack].nblocks);
429 max_data_size = imax(max_data_size, packed.send_packs[ipack].data_size);
430 }
431 dbm_mpi_max_int(&max_nblocks, 1, packed.dist_ticks->comm);
432 dbm_mpi_max_int(&max_data_size, 1, packed.dist_ticks->comm);
433 packed.max_nblocks = max_nblocks;
434 packed.max_data_size = max_data_size;
435 packed.recv_pack.blocks =
437 packed.recv_pack.data =
438 dbm_mempool_host_malloc(packed.max_data_size * sizeof(double));
439
440 return packed; // Ownership of packed transfers to caller.
441}
442
443/*******************************************************************************
444 * \brief Private routine for sending and receiving the pack for the given tick.
445 * \author Ole Schuett
446 ******************************************************************************/
447static dbm_pack_t *sendrecv_pack(const int itick, const int nticks,
448 dbm_packed_matrix_t *packed) {
449 const int nranks = packed->dist_ticks->nranks;
450 const int my_rank = packed->dist_ticks->my_rank;
451
452 // Compute send rank and pack.
453 const int itick_of_rank0 = (itick + nticks - my_rank) % nticks;
454 const int send_rank = (my_rank + nticks - itick_of_rank0) % nranks;
455 const int send_itick = (itick_of_rank0 + send_rank) % nticks;
456 const int send_ipack = send_itick / nranks;
457 assert(send_itick % nranks == my_rank);
458
459 // Compute receive rank and pack.
460 const int recv_rank = itick % nranks;
461 const int recv_ipack = itick / nranks;
462
463 dbm_pack_t *send_pack = &packed->send_packs[send_ipack];
464 if (send_rank == my_rank) {
465 assert(send_rank == recv_rank && send_ipack == recv_ipack);
466 return send_pack; // Local pack, no mpi needed.
467 } else {
468 // Exchange blocks.
469 const int nblocks_in_bytes = dbm_mpi_sendrecv_byte(
470 /*sendbuf=*/send_pack->blocks,
471 /*sendcound=*/send_pack->nblocks * sizeof(dbm_pack_block_t),
472 /*dest=*/send_rank,
473 /*sendtag=*/send_ipack,
474 /*recvbuf=*/packed->recv_pack.blocks,
475 /*recvcount=*/packed->max_nblocks * sizeof(dbm_pack_block_t),
476 /*source=*/recv_rank,
477 /*recvtag=*/recv_ipack,
478 /*comm=*/packed->dist_ticks->comm);
479
480 assert(nblocks_in_bytes % sizeof(dbm_pack_block_t) == 0);
481 packed->recv_pack.nblocks = nblocks_in_bytes / sizeof(dbm_pack_block_t);
482
483 // Exchange data.
485 /*sendbuf=*/send_pack->data,
486 /*sendcound=*/send_pack->data_size,
487 /*dest=*/send_rank,
488 /*sendtag=*/send_ipack,
489 /*recvbuf=*/packed->recv_pack.data,
490 /*recvcount=*/packed->max_data_size,
491 /*source=*/recv_rank,
492 /*recvtag=*/recv_ipack,
493 /*comm=*/packed->dist_ticks->comm);
494
495 return &packed->recv_pack;
496 }
497}
498
499/*******************************************************************************
500 * \brief Private routine for releasing a packed matrix.
501 * \author Ole Schuett
502 ******************************************************************************/
506 for (int ipack = 0; ipack < packed->nsend_packs; ipack++) {
507 dbm_mpi_free_mem(packed->send_packs[ipack].blocks);
508 dbm_mempool_host_free(packed->send_packs[ipack].data);
509 }
510 free(packed->send_packs);
511}
512
513/*******************************************************************************
514 * \brief Internal routine for creating a communication iterator.
515 * \author Ole Schuett
516 ******************************************************************************/
518 const bool transb,
519 const dbm_matrix_t *matrix_a,
520 const dbm_matrix_t *matrix_b,
521 const dbm_matrix_t *matrix_c) {
522
523 dbm_comm_iterator_t *iter = malloc(sizeof(dbm_comm_iterator_t));
524 assert(iter != NULL);
525 iter->dist = matrix_c->dist;
526
527 // During each communication tick we'll fetch a pack_a and pack_b.
528 // Since the cart might be non-squared, the number of communication ticks is
529 // chosen as the least common multiple of the cart's dimensions.
530 iter->nticks = lcm(iter->dist->rows.nranks, iter->dist->cols.nranks);
531 iter->itick = 0;
532
533 // 1.arg=source dimension, 2.arg=target dimension, false=rows, true=columns.
534 iter->packed_a =
535 pack_matrix(transa, false, matrix_a, iter->dist, iter->nticks);
536 iter->packed_b =
537 pack_matrix(!transb, true, matrix_b, iter->dist, iter->nticks);
538
539 return iter;
540}
541
542/*******************************************************************************
543 * \brief Internal routine for retriving next pair of packs from given iterator.
544 * \author Ole Schuett
545 ******************************************************************************/
547 dbm_pack_t **pack_b) {
548 if (iter->itick >= iter->nticks) {
549 return false; // end of iterator reached
550 }
551
552 // Start each rank at a different tick to spread the load on the sources.
553 const int shift = iter->dist->rows.my_rank + iter->dist->cols.my_rank;
554 const int shifted_itick = (iter->itick + shift) % iter->nticks;
555 *pack_a = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_a);
556 *pack_b = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_b);
557
558 iter->itick++;
559 return true;
560}
561
562/*******************************************************************************
563 * \brief Internal routine for releasing the given communication iterator.
564 * \author Ole Schuett
565 ******************************************************************************/
569 free(iter);
570}
571
572// EOF
static int imax(int x, int y)
Returns the larger of two given integers (missing from the C standard)
static int dbm_get_shard_index(const dbm_matrix_t *matrix, const int row, const int col)
Internal routine for getting a block's shard index.
Definition dbm_matrix.h:240
static int dbm_get_num_shards(const dbm_matrix_t *matrix)
Internal routine that returns the number of shards for given matrix.
Definition dbm_matrix.h:232
void dbm_mempool_host_free(const void *memory)
Internal routine for releasing memory back to the pool.
void * dbm_mempool_host_malloc(size_t size)
Internal routine for allocating host memory from the pool.
int dbm_mpi_sendrecv_byte(const void *sendbuf, const int sendcount, const int dest, const int sendtag, void *recvbuf, const int recvcount, const int source, const int recvtag, const dbm_mpi_comm_t comm)
Wrapper around MPI_Sendrecv for datatype MPI_BYTE.
Definition dbm_mpi.c:369
void dbm_mpi_free_mem(void *mem)
Wrapper around MPI_Free_mem.
Definition dbm_mpi.c:499
void * dbm_mpi_alloc_mem(size_t size)
Wrapper around MPI_Alloc_mem.
Definition dbm_mpi.c:483
int dbm_mpi_cart_rank(const dbm_mpi_comm_t comm, const int coords[])
Wrapper around MPI_Cart_rank.
Definition dbm_mpi.c:179
bool dbm_mpi_comms_are_similar(const dbm_mpi_comm_t comm1, const dbm_mpi_comm_t comm2)
Wrapper around MPI_Comm_compare.
Definition dbm_mpi.c:224
void dbm_mpi_alltoallv_byte(const void *sendbuf, const int *sendcounts, const int *sdispls, void *recvbuf, const int *recvcounts, const int *rdispls, const dbm_mpi_comm_t comm)
Wrapper around MPI_Alltoallv for datatype MPI_BYTE.
Definition dbm_mpi.c:445
void dbm_mpi_alltoall_int(const int *sendbuf, const int sendcount, int *recvbuf, const int recvcount, const dbm_mpi_comm_t comm)
Wrapper around MPI_Alltoall for datatype MPI_INT.
Definition dbm_mpi.c:429
int dbm_mpi_sendrecv_double(const double *sendbuf, const int sendcount, const int dest, const int sendtag, double *recvbuf, const int recvcount, const int source, const int recvtag, const dbm_mpi_comm_t comm)
Wrapper around MPI_Sendrecv for datatype MPI_DOUBLE.
Definition dbm_mpi.c:399
void dbm_mpi_max_int(int *values, const int count, const dbm_mpi_comm_t comm)
Wrapper around MPI_Allreduce for op MPI_MAX and datatype MPI_INT.
Definition dbm_mpi.c:241
void dbm_mpi_alltoallv_double(const double *sendbuf, const int *sendcounts, const int *sdispls, double *recvbuf, const int *recvcounts, const int *rdispls, const dbm_mpi_comm_t comm)
Wrapper around MPI_Alltoallv for datatype MPI_DOUBLE.
Definition dbm_mpi.c:464
int dbm_mpi_comm_t
Definition dbm_mpi.h:19
static void create_pack_plans(const bool trans_matrix, const bool trans_dist, const dbm_matrix_t *matrix, const dbm_mpi_comm_t comm, const dbm_dist_1d_t *dist_indices, const dbm_dist_1d_t *dist_ticks, const int nticks, const int npacks, plan_t *plans_per_pack[npacks], int nblks_per_pack[npacks], int ndata_per_pack[npacks])
Private routine for planing packs.
static void free_packed_matrix(dbm_packed_matrix_t *packed)
Private routine for releasing a packed matrix.
static void icumsum(const int n, const int input[n], int output[n])
Private routine for computing the cumulative sums of given numbers.
static void postprocess_received_blocks(const int nranks, const int nshards, const int nblocks_recv, const int blks_recv_count[nranks], const int blks_recv_displ[nranks], const int data_recv_displ[nranks], dbm_pack_block_t blks_recv[nblocks_recv])
Private routine for post-processing received blocks.
dbm_comm_iterator_t * dbm_comm_iterator_start(const bool transa, const bool transb, const dbm_matrix_t *matrix_a, const dbm_matrix_t *matrix_b, const dbm_matrix_t *matrix_c)
Internal routine for creating a communication iterator.
static void fill_send_buffers(const dbm_matrix_t *matrix, const bool trans_matrix, const int nblks_send, const int ndata_send, plan_t plans[nblks_send], const int nranks, int blks_send_count[nranks], int data_send_count[nranks], int blks_send_displ[nranks], int data_send_displ[nranks], dbm_pack_block_t blks_send[nblks_send], double data_send[ndata_send])
Private routine for filling send buffers.
void dbm_comm_iterator_stop(dbm_comm_iterator_t *iter)
Internal routine for releasing the given communication iterator.
static dbm_pack_t * sendrecv_pack(const int itick, const int nticks, dbm_packed_matrix_t *packed)
Private routine for sending and receiving the pack for the given tick.
static int compare_pack_blocks_by_sum_index(const void *a, const void *b)
Private comperator passed to qsort to compare two blocks by sum_index.
bool dbm_comm_iterator_next(dbm_comm_iterator_t *iter, dbm_pack_t **pack_a, dbm_pack_t **pack_b)
Internal routine for retriving next pair of packs from given iterator.
static dbm_packed_matrix_t pack_matrix(const bool trans_matrix, const bool trans_dist, const dbm_matrix_t *matrix, const dbm_distribution_t *dist, const int nticks)
Private routine for redistributing a matrix along selected dimensions.
static int isum(const int n, const int input[n])
Private routine for computing the sum of the given integers.
static void const int const int i
Internal struct for storing a block's metadata.
Definition dbm_shard.h:20
Internal struct for storing a communication iterator.
dbm_packed_matrix_t packed_a
dbm_distribution_t * dist
dbm_packed_matrix_t packed_b
Internal struct for storing a one dimensional distribution.
dbm_mpi_comm_t comm
Internal struct for storing a two dimensional distribution.
dbm_mpi_comm_t comm
Internal struct for storing a matrix.
Definition dbm_matrix.h:20
int * row_sizes
Definition dbm_matrix.h:25
int * col_sizes
Definition dbm_matrix.h:26
dbm_shard_t * shards
Definition dbm_matrix.h:28
dbm_distribution_t * dist
Definition dbm_matrix.h:21
Internal struct for storing a dbm_block_t plus its norm.
Internal struct for storing a pack - essentially a shard for MPI.
double * data
dbm_pack_block_t * blocks
Internal struct for storing a packed matrix.
const dbm_dist_1d_t * dist_ticks
const dbm_dist_1d_t * dist_indices
Internal struct for storing a matrix shard.
Definition dbm_shard.h:30
double * data
Definition dbm_shard.h:43
dbm_block_t * blocks
Definition dbm_shard.h:33
Private struct used for planing during pack_matrix.
const dbm_block_t * blk