Go to the source code of this file.
|  | 
| module | gamma | 
|  | Calculation of the incomplete Gamma function F_n(t) for multi-center integrals over Cartesian Gaussian functions. 
 | 
|  | 
|  | 
| subroutine, public | gamma::deallocate_md_ftable () | 
|  | Deallocate the table of F_n(t) values. 
 | 
|  | 
| subroutine, public | gamma::fgamma_0 (nmax, t, f) | 
|  | Calculation of the incomplete Gamma function F(t) for multicenter integrals over Gaussian functions. f returns a vector with all F_n(t) values for 0 <= n <= nmax. 
 | 
|  | 
| real(kind=dp) function, dimension(0:nmax), public | gamma::fgamma_ref (nmax, t) | 
|  | Calculation of the incomplete Gamma function F_n(t) using a spherical Bessel function expansion. fgamma_ref returns a vector with all F_n(t) values for 0 <= n <= nmax. For t values greater than 50 an asymptotic formula is used. This function is expected to return accurate F_n(t) values for any combination of n and t, but the calculation is slow and therefore the function may only be used for a pretabulation of F_n(t) values or for reference calculations. 
 | 
|  | 
| subroutine, public | gamma::init_md_ftable (nmax) | 
|  | Initialize a table of F_n(t) values in the range 0 <= t <= 12 with a stepsize of 0.1 up to n equal to nmax for the Taylor series expansion used by McMurchie-Davidson (MD). 
 | 
|  |