36 dbcsr_type_antisymmetric, dbcsr_type_no_symmetry, &
60 USE trexio,
ONLY: trexio_open, trexio_close, &
61 trexio_hdf5, trexio_success, &
62 trexio_string_of_error, trexio_t, trexio_exit_code, &
63 trexio_write_metadata_code, trexio_write_metadata_code_num, &
64 trexio_write_nucleus_coord, trexio_read_nucleus_coord, &
65 trexio_write_nucleus_num, trexio_read_nucleus_num, &
66 trexio_write_nucleus_charge, trexio_read_nucleus_charge, &
67 trexio_write_nucleus_label, trexio_read_nucleus_label, &
68 trexio_write_nucleus_repulsion, &
69 trexio_write_cell_a, trexio_write_cell_b, trexio_write_cell_c, &
70 trexio_write_cell_g_a, trexio_write_cell_g_b, &
71 trexio_write_cell_g_c, trexio_write_cell_two_pi, &
72 trexio_write_pbc_periodic, trexio_write_pbc_k_point_num, &
73 trexio_write_pbc_k_point, trexio_write_pbc_k_point_weight, &
74 trexio_write_electron_num, trexio_read_electron_num, &
75 trexio_write_electron_up_num, trexio_read_electron_up_num, &
76 trexio_write_electron_dn_num, trexio_read_electron_dn_num, &
77 trexio_write_state_num, trexio_write_state_id, &
78 trexio_write_state_energy, &
79 trexio_write_basis_type, trexio_write_basis_prim_num, &
80 trexio_write_basis_shell_num, trexio_read_basis_shell_num, &
81 trexio_write_basis_nucleus_index, &
82 trexio_write_basis_shell_ang_mom, trexio_read_basis_shell_ang_mom, &
83 trexio_write_basis_shell_factor, &
84 trexio_write_basis_r_power, trexio_write_basis_shell_index, &
85 trexio_write_basis_exponent, trexio_write_basis_coefficient, &
86 trexio_write_basis_prim_factor, &
87 trexio_write_ecp_z_core, trexio_write_ecp_max_ang_mom_plus_1, &
88 trexio_write_ecp_num, trexio_write_ecp_ang_mom, &
89 trexio_write_ecp_nucleus_index, trexio_write_ecp_exponent, &
90 trexio_write_ecp_coefficient, trexio_write_ecp_power, &
91 trexio_write_ao_cartesian, trexio_write_ao_num, &
92 trexio_read_ao_cartesian, trexio_read_ao_num, &
93 trexio_write_ao_shell, trexio_write_ao_normalization, &
94 trexio_read_ao_shell, trexio_read_ao_normalization, &
95 trexio_write_mo_num, trexio_write_mo_energy, &
96 trexio_read_mo_num, trexio_read_mo_energy, &
97 trexio_write_mo_occupation, trexio_write_mo_spin, &
98 trexio_read_mo_occupation, trexio_read_mo_spin, &
99 trexio_write_mo_class, trexio_write_mo_coefficient, &
100 trexio_read_mo_class, trexio_read_mo_coefficient, &
101 trexio_write_mo_coefficient_im, trexio_write_mo_k_point, &
104#include "./base/base_uses.f90"
110 CHARACTER(len=*),
PARAMETER,
PRIVATE :: moduleN =
'trexio_utils'
125 TYPE(
dbcsr_p_type),
INTENT(IN),
DIMENSION(:),
POINTER,
OPTIONAL :: energy_derivative
127 CHARACTER(LEN=*),
PARAMETER :: routinen =
'write_trexio'
132 INTEGER :: output_unit, unit_trexio
133 CHARACTER(len=default_path_length) :: filename, filename_de
134 INTEGER(trexio_t) :: f
135 INTEGER(trexio_exit_code) :: rc
136 LOGICAL :: explicit, do_kpoints, ecp_semi_local, &
137 ecp_local, sgp_potential_present, ionode, &
138 use_real_wfn, save_cartesian
139 REAL(kind=
dp) :: e_nn, zeff, expzet, prefac, zeta, gcca
140 TYPE(
cell_type),
POINTER :: cell => null()
145 TYPE(
particle_type),
DIMENSION(:),
POINTER :: particle_set => null()
147 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: kind_set => null()
149 TYPE(
mo_set_type),
DIMENSION(:),
POINTER :: mos => null()
150 TYPE(
mo_set_type),
DIMENSION(:, :),
POINTER :: mos_kp => null()
152 TYPE(
mp_para_env_type),
POINTER :: para_env => null(), para_env_inter_kp => null()
155 TYPE(
cp_fm_type) :: fm_mo_coeff, fm_dummy, fm_mo_coeff_im
158 CHARACTER(LEN=2) :: element_symbol
159 CHARACTER(LEN=2),
DIMENSION(:),
ALLOCATABLE :: label
160 INTEGER :: iatom, natoms, periodic, nkp, nel_tot, &
161 nspins, ikind, ishell_loc, ishell, &
162 shell_num, prim_num, nset, iset, ipgf, z, &
163 sl_lmax, ecp_num, nloc, nsemiloc, sl_l, iecp, &
164 igf, icgf, ncgf, ngf_shell, lshell, ao_num, nmo, &
165 mo_num, ispin, ikp, imo, ikp_loc, nsgf, &
166 i, j, k, l, m, unit_de, &
167 row, col, row_size, col_size, &
168 row_offset, col_offset
169 INTEGER,
DIMENSION(2) :: nel_spin, kp_range, nmo_spin
170 INTEGER,
DIMENSION(3) :: nkp_grid
171 INTEGER,
DIMENSION(0:10) :: npot
172 INTEGER,
DIMENSION(:),
ALLOCATABLE :: nucleus_index, shell_ang_mom, r_power, &
173 shell_index, z_core, max_ang_mom_plus_1, &
174 ang_mom, powers, ao_shell, mo_spin, mo_kpoint, &
175 cp2k_to_trexio_ang_mom
176 INTEGER,
DIMENSION(:),
POINTER :: nshell => null(), npgf => null()
177 INTEGER,
DIMENSION(:, :),
POINTER :: l_shell_set => null()
178 REAL(kind=
dp),
DIMENSION(:),
ALLOCATABLE :: charge, shell_factor, exponents, coefficients, &
179 prim_factor, ao_normalization, mo_energy, &
181 REAL(kind=
dp),
DIMENSION(:),
POINTER :: wkp => null(), norm_cgf => null()
182 REAL(kind=
dp),
DIMENSION(:, :),
ALLOCATABLE :: coord, mo_coefficient, mo_coefficient_im, &
183 mos_sgf, diag_nsgf, diag_ncgf, temp, dedp
184 REAL(kind=
dp),
DIMENSION(:, :),
POINTER :: zetas => null(), data_block => null()
185 REAL(kind=
dp),
DIMENSION(:, :, :),
POINTER :: gcc => null()
188 CALL timeset(routinen, handle)
194 cpassert(
ASSOCIATED(qs_env))
198 IF (.NOT. explicit)
THEN
199 filename = trim(logger%iter_info%project_name)//
'-TREXIO.h5'
201 filename = trim(filename)//
'.h5'
205 ionode = para_env%is_source()
210 CALL open_file(filename, unit_number=unit_trexio)
211 CALL close_file(unit_number=unit_trexio, file_status=
"DELETE")
217 WRITE (output_unit,
"((T2,A,A))")
'TREXIO| Writing trexio file ', trim(filename)
218 f = trexio_open(filename,
'w', trexio_hdf5, rc)
219 CALL trexio_error(rc)
224 rc = trexio_write_metadata_code_num(f, 1)
225 CALL trexio_error(rc)
228 CALL trexio_error(rc)
233 CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set, qs_kind_set=kind_set, natom=natoms)
235 rc = trexio_write_nucleus_num(f, natoms)
236 CALL trexio_error(rc)
238 ALLOCATE (coord(3, natoms))
239 ALLOCATE (label(natoms))
240 ALLOCATE (charge(natoms))
243 coord(:, iatom) = particle_set(iatom)%r(1:3)
245 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, element_symbol=element_symbol, kind_number=ikind)
247 label(iatom) = element_symbol
253 rc = trexio_write_nucleus_coord(f, coord)
254 CALL trexio_error(rc)
257 rc = trexio_write_nucleus_charge(f, charge)
258 CALL trexio_error(rc)
261 rc = trexio_write_nucleus_label(f, label, 3)
262 CALL trexio_error(rc)
266 IF (sum(cell%perd) == 0)
THEN
267 CALL nuclear_repulsion_energy(particle_set, kind_set, e_nn)
268 rc = trexio_write_nucleus_repulsion(f, e_nn)
269 CALL trexio_error(rc)
275 rc = trexio_write_cell_a(f, cell%hmat(:, 1))
276 CALL trexio_error(rc)
278 rc = trexio_write_cell_b(f, cell%hmat(:, 2))
279 CALL trexio_error(rc)
281 rc = trexio_write_cell_c(f, cell%hmat(:, 3))
282 CALL trexio_error(rc)
284 rc = trexio_write_cell_g_a(f, cell%h_inv(:, 1))
285 CALL trexio_error(rc)
287 rc = trexio_write_cell_g_b(f, cell%h_inv(:, 2))
288 CALL trexio_error(rc)
290 rc = trexio_write_cell_g_c(f, cell%h_inv(:, 3))
291 CALL trexio_error(rc)
293 rc = trexio_write_cell_two_pi(f, 0)
294 CALL trexio_error(rc)
299 CALL get_qs_env(qs_env, do_kpoints=do_kpoints, kpoints=kpoints)
302 IF (sum(cell%perd) /= 0) periodic = 1
303 rc = trexio_write_pbc_periodic(f, periodic)
304 CALL trexio_error(rc)
309 rc = trexio_write_pbc_k_point_num(f, nkp)
310 CALL trexio_error(rc)
312 rc = trexio_write_pbc_k_point(f, real(nkp_grid, kind=
dp))
313 CALL trexio_error(rc)
315 rc = trexio_write_pbc_k_point_weight(f, wkp)
316 CALL trexio_error(rc)
322 CALL get_qs_env(qs_env, dft_control=dft_control, nelectron_total=nel_tot)
324 rc = trexio_write_electron_num(f, nel_tot)
325 CALL trexio_error(rc)
327 nspins = dft_control%nspins
328 IF (nspins == 1)
THEN
331 nel_spin(1) = nel_tot/2
332 nel_spin(2) = nel_tot/2
336 CALL get_qs_env(qs_env, nelectron_spin=nel_spin)
338 rc = trexio_write_electron_up_num(f, nel_spin(1))
339 CALL trexio_error(rc)
340 rc = trexio_write_electron_dn_num(f, nel_spin(2))
341 CALL trexio_error(rc)
348 rc = trexio_write_state_num(f, 1)
349 CALL trexio_error(rc)
351 rc = trexio_write_state_id(f, 1)
352 CALL trexio_error(rc)
354 rc = trexio_write_state_energy(f, energy%total)
355 CALL trexio_error(rc)
362 CALL get_qs_env(qs_env, qs_kind_set=kind_set, natom=natoms, particle_set=particle_set)
366 rc = trexio_write_basis_type(f,
'Gaussian', len_trim(
'Gaussian') + 1)
367 CALL trexio_error(rc)
369 rc = trexio_write_basis_shell_num(f, shell_num)
370 CALL trexio_error(rc)
372 rc = trexio_write_basis_prim_num(f, prim_num)
373 CALL trexio_error(rc)
377 ALLOCATE (nucleus_index(shell_num))
378 ALLOCATE (shell_ang_mom(shell_num))
379 ALLOCATE (shell_index(prim_num))
380 ALLOCATE (exponents(prim_num))
381 ALLOCATE (coefficients(prim_num))
382 ALLOCATE (prim_factor(prim_num))
388 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
390 CALL get_qs_kind(kind_set(ikind), basis_set=basis_set, basis_type=
"ORB")
401 DO ishell_loc = 1, nshell(iset)
405 nucleus_index(ishell) = iatom
408 l = l_shell_set(ishell_loc, iset)
409 shell_ang_mom(ishell) = l
412 shell_index(ipgf + 1:ipgf + npgf(iset)) = ishell
415 exponents(ipgf + 1:ipgf + npgf(iset)) = zetas(1:npgf(iset), iset)
419 expzet = 0.25_dp*real(2*l + 3,
dp)
420 prefac = 2.0_dp**l*(2.0_dp/
pi)**0.75_dp
422 gcca = gcc(i, ishell_loc, iset)
423 zeta = zetas(i, iset)
426 prim_factor(i + ipgf) = prefac*zeta**expzet
429 coefficients(i + ipgf) = gcca/prim_factor(i + ipgf)
432 ipgf = ipgf + npgf(iset)
437 cpassert(ishell == shell_num)
438 cpassert(ipgf == prim_num)
441 rc = trexio_write_basis_nucleus_index(f, nucleus_index)
442 CALL trexio_error(rc)
444 rc = trexio_write_basis_shell_ang_mom(f, shell_ang_mom)
445 CALL trexio_error(rc)
448 ALLOCATE (shell_factor(shell_num))
449 shell_factor(:) = 1.0_dp
450 rc = trexio_write_basis_shell_factor(f, shell_factor)
451 CALL trexio_error(rc)
452 DEALLOCATE (shell_factor)
455 ALLOCATE (r_power(shell_num))
457 rc = trexio_write_basis_r_power(f, r_power)
458 CALL trexio_error(rc)
461 rc = trexio_write_basis_shell_index(f, shell_index)
462 CALL trexio_error(rc)
464 rc = trexio_write_basis_exponent(f, exponents)
465 CALL trexio_error(rc)
467 rc = trexio_write_basis_coefficient(f, coefficients)
468 CALL trexio_error(rc)
471 rc = trexio_write_basis_prim_factor(f, prim_factor)
472 CALL trexio_error(rc)
475 DEALLOCATE (nucleus_index)
476 DEALLOCATE (shell_index)
477 DEALLOCATE (exponents)
478 DEALLOCATE (coefficients)
479 DEALLOCATE (prim_factor)
486 CALL get_qs_kind_set(kind_set, sgp_potential_present=sgp_potential_present)
490 IF (sgp_potential_present)
THEN
493 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
495 CALL get_qs_kind(kind_set(ikind), sgp_potential=sgp_potential)
498 IF (
ASSOCIATED(sgp_potential))
THEN
499 CALL get_potential(potential=sgp_potential, ecp_local=ecp_local, ecp_semi_local=ecp_semi_local)
503 ecp_num = ecp_num + nloc
505 IF (ecp_semi_local)
THEN
508 ecp_num = ecp_num + sum(npot)
515 IF (ecp_num > 0)
THEN
516 ALLOCATE (z_core(natoms))
517 ALLOCATE (max_ang_mom_plus_1(natoms))
518 max_ang_mom_plus_1(:) = 0
520 ALLOCATE (ang_mom(ecp_num))
521 ALLOCATE (nucleus_index(ecp_num))
522 ALLOCATE (exponents(ecp_num))
523 ALLOCATE (coefficients(ecp_num))
524 ALLOCATE (powers(ecp_num))
529 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind, z=z)
531 CALL get_qs_kind(kind_set(ikind), sgp_potential=sgp_potential, zeff=zeff)
534 z_core(iatom) = z - int(zeff)
537 IF (
ASSOCIATED(sgp_potential))
THEN
538 CALL get_potential(potential=sgp_potential, ecp_local=ecp_local, ecp_semi_local=ecp_semi_local)
542 CALL get_potential(potential=sgp_potential, nloc=nloc, sl_lmax=sl_lmax)
543 ang_mom(iecp + 1:iecp + nloc) = sl_lmax + 1
544 nucleus_index(iecp + 1:iecp + nloc) = iatom
545 exponents(iecp + 1:iecp + nloc) = sgp_potential%bloc(1:nloc)
546 coefficients(iecp + 1:iecp + nloc) = sgp_potential%aloc(1:nloc)
547 powers(iecp + 1:iecp + nloc) = sgp_potential%nrloc(1:nloc) - 2
552 IF (ecp_semi_local)
THEN
553 CALL get_potential(potential=sgp_potential, npot=npot, sl_lmax=sl_lmax)
554 max_ang_mom_plus_1(iatom) = sl_lmax + 1
557 nsemiloc = npot(sl_l)
558 ang_mom(iecp + 1:iecp + nsemiloc) = sl_l
559 nucleus_index(iecp + 1:iecp + nsemiloc) = iatom
560 exponents(iecp + 1:iecp + nsemiloc) = sgp_potential%bpot(1:nsemiloc, sl_l)
561 coefficients(iecp + 1:iecp + nsemiloc) = sgp_potential%apot(1:nsemiloc, sl_l)
562 powers(iecp + 1:iecp + nsemiloc) = sgp_potential%nrpot(1:nsemiloc, sl_l) - 2
563 iecp = iecp + nsemiloc
570 cpassert(iecp == ecp_num)
572 rc = trexio_write_ecp_num(f, ecp_num)
573 CALL trexio_error(rc)
575 rc = trexio_write_ecp_z_core(f, z_core)
576 CALL trexio_error(rc)
579 rc = trexio_write_ecp_max_ang_mom_plus_1(f, max_ang_mom_plus_1)
580 CALL trexio_error(rc)
581 DEALLOCATE (max_ang_mom_plus_1)
583 rc = trexio_write_ecp_ang_mom(f, ang_mom)
584 CALL trexio_error(rc)
587 rc = trexio_write_ecp_nucleus_index(f, nucleus_index)
588 CALL trexio_error(rc)
589 DEALLOCATE (nucleus_index)
591 rc = trexio_write_ecp_exponent(f, exponents)
592 CALL trexio_error(rc)
593 DEALLOCATE (exponents)
595 rc = trexio_write_ecp_coefficient(f, coefficients)
596 CALL trexio_error(rc)
597 DEALLOCATE (coefficients)
599 rc = trexio_write_ecp_power(f, powers)
600 CALL trexio_error(rc)
618 IF (save_cartesian)
THEN
625 IF (save_cartesian)
THEN
626 rc = trexio_write_ao_cartesian(f, 1)
628 rc = trexio_write_ao_cartesian(f, 0)
630 CALL trexio_error(rc)
632 rc = trexio_write_ao_num(f, ao_num)
633 CALL trexio_error(rc)
637 ALLOCATE (ao_shell(ao_num))
638 ALLOCATE (ao_normalization(ao_num))
645 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
647 CALL get_qs_kind(kind_set(ikind), basis_set=basis_set, basis_type=
"ORB")
659 DO ishell_loc = 1, nshell(iset)
663 lshell = l_shell_set(ishell_loc, iset)
666 IF (save_cartesian)
THEN
667 ngf_shell =
nco(lshell)
669 ngf_shell =
nso(lshell)
673 ao_shell(igf + 1:igf + ngf_shell) = ishell
676 IF (save_cartesian)
THEN
677 ao_normalization(igf + 1:igf + ngf_shell) = norm_cgf(icgf + 1:icgf + ngf_shell)
680 ALLOCATE (diag_ncgf(
nco(lshell),
nco(lshell)))
681 ALLOCATE (diag_nsgf(
nso(lshell),
nso(lshell)))
682 ALLOCATE (temp(
nso(lshell),
nco(lshell)))
687 DO i = 1,
nco(lshell)
688 diag_ncgf(i, i) = norm_cgf(icgf + i)
692 temp(:, :) = matmul(
orbtramat(lshell)%c2s, diag_ncgf)
693 diag_nsgf(:, :) = matmul(temp, transpose(
orbtramat(lshell)%s2c))
694 DO i = 1,
nso(lshell)
695 ao_normalization(igf + i) = diag_nsgf(i, i)
698 DEALLOCATE (diag_ncgf)
699 DEALLOCATE (diag_nsgf)
703 igf = igf + ngf_shell
704 icgf = icgf +
nco(lshell)
708 cpassert(icgf == ncgf)
712 rc = trexio_write_ao_shell(f, ao_shell)
713 CALL trexio_error(rc)
715 rc = trexio_write_ao_normalization(f, ao_normalization)
716 CALL trexio_error(rc)
719 DEALLOCATE (ao_shell)
720 DEALLOCATE (ao_normalization)
725 CALL get_qs_env(qs_env, do_kpoints=do_kpoints, kpoints=kpoints, dft_control=dft_control, &
726 particle_set=particle_set, qs_kind_set=kind_set, blacs_env=blacs_env)
727 nspins = dft_control%nspins
734 CALL get_kpoint_info(kpoints, kp_env=kp_env, nkp=nkp, use_real_wfn=use_real_wfn)
738 nmo_spin(ispin) = nmo
740 mo_num = nkp*sum(nmo_spin)
744 nrow_global=nsgf, ncol_global=mo_num)
747 IF (.NOT. use_real_wfn)
THEN
756 nmo_spin(ispin) = nmo
758 mo_num = sum(nmo_spin)
762 ALLOCATE (mo_coefficient(ao_num, mo_num))
763 mo_coefficient(:, :) = 0.0_dp
764 ALLOCATE (mo_energy(mo_num))
765 mo_energy(:) = 0.0_dp
766 ALLOCATE (mo_occupation(mo_num))
767 mo_occupation(:) = 0.0_dp
768 ALLOCATE (mo_spin(mo_num))
772 ALLOCATE (mo_coefficient_im(ao_num, mo_num))
773 mo_coefficient_im(:, :) = 0.0_dp
774 ALLOCATE (mo_kpoint(mo_num))
782 CALL get_kpoint_info(kpoints, kp_env=kp_env, nkp=nkp, kp_range=kp_range)
786 nmo = nmo_spin(ispin)
788 imo = (ikp - 1)*nmo + (ispin - 1)*nmo_spin(1)*nkp
791 IF (ikp >= kp_range(1) .AND. ikp <= kp_range(2))
THEN
792 ikp_loc = ikp - kp_range(1) + 1
797 IF (mos_kp(1, ispin)%use_mo_coeff_b)
THEN
798 CALL copy_dbcsr_to_fm(mos_kp(1, ispin)%mo_coeff_b, mos_kp(1, ispin)%mo_coeff)
802 nsgf, nmo, 1, 1, 1, imo + 1, blacs_env)
805 mo_energy(imo + 1:imo + nmo) = mos_kp(1, ispin)%eigenvalues(1:nmo)
808 mo_occupation(imo + 1:imo + nmo) = mos_kp(1, ispin)%occupation_numbers(1:nmo)
811 IF (.NOT. use_real_wfn)
THEN
812 IF (mos_kp(2, ispin)%use_mo_coeff_b)
THEN
813 CALL copy_dbcsr_to_fm(mos_kp(2, ispin)%mo_coeff_b, mos_kp(2, ispin)%mo_coeff)
816 nsgf, nmo, 1, 1, 1, imo + 1, blacs_env)
821 nsgf, nmo, 1, 1, 1, imo + 1, blacs_env)
822 IF (.NOT. use_real_wfn)
THEN
824 nsgf, nmo, 1, 1, 1, imo + 1, blacs_env)
834 CALL para_env_inter_kp%sum(mo_energy)
835 CALL para_env_inter_kp%sum(mo_occupation)
841 ALLOCATE (cp2k_to_trexio_ang_mom(nsgf))
843 DO ishell = 1, shell_num
844 l = shell_ang_mom(ishell)
846 m = (-1)**k*floor(real(k, kind=
dp)/2.0_dp)
847 cp2k_to_trexio_ang_mom(i + k) = i + l + 1 + m
856 nmo = nmo_spin(ispin)
858 ALLOCATE (mos_sgf(nsgf, nmo))
863 imo = (ikp - 1)*nmo + (ispin - 1)*nmo_spin(1)*nkp
866 mo_kpoint(imo + 1:imo + nmo) = ikp
868 mo_spin(imo + 1:imo + nmo) = ispin - 1
872 IF (save_cartesian)
THEN
873 CALL spherical_to_cartesian_mo(mos_sgf, particle_set, kind_set, mo_coefficient(:, imo + 1:imo + nmo))
877 mo_coefficient(i, imo + 1:imo + nmo) = mos_sgf(cp2k_to_trexio_ang_mom(i), :)
882 IF (.NOT. use_real_wfn)
THEN
884 IF (save_cartesian)
THEN
885 CALL spherical_to_cartesian_mo(mos_sgf, particle_set, kind_set, mo_coefficient_im(:, imo + 1:imo + nmo))
889 mo_coefficient_im(i, imo + 1:imo + nmo) = mos_sgf(cp2k_to_trexio_ang_mom(i), :)
896 imo = (ispin - 1)*nmo_spin(1)
898 mo_energy(imo + 1:imo + nmo) = mos(ispin)%eigenvalues
900 mo_occupation(imo + 1:imo + nmo) = mos(ispin)%occupation_numbers
902 mo_spin(imo + 1:imo + nmo) = ispin - 1
905 IF (mos(ispin)%use_mo_coeff_b)
CALL copy_dbcsr_to_fm(mos(ispin)%mo_coeff_b, mos(ispin)%mo_coeff)
910 IF (save_cartesian)
THEN
911 CALL spherical_to_cartesian_mo(mos_sgf, particle_set, kind_set, mo_coefficient(:, imo + 1:imo + nmo))
915 mo_coefficient(i, imo + 1:imo + nmo) = mos_sgf(cp2k_to_trexio_ang_mom(i), :)
924 rc = trexio_write_mo_type(f,
'Canonical', len_trim(
'Canonical') + 1)
925 CALL trexio_error(rc)
927 rc = trexio_write_mo_num(f, mo_num)
928 CALL trexio_error(rc)
930 rc = trexio_write_mo_coefficient(f, mo_coefficient)
931 CALL trexio_error(rc)
933 rc = trexio_write_mo_energy(f, mo_energy)
934 CALL trexio_error(rc)
936 rc = trexio_write_mo_occupation(f, mo_occupation)
937 CALL trexio_error(rc)
939 rc = trexio_write_mo_spin(f, mo_spin)
940 CALL trexio_error(rc)
943 rc = trexio_write_mo_coefficient_im(f, mo_coefficient_im)
944 CALL trexio_error(rc)
946 rc = trexio_write_mo_k_point(f, mo_kpoint)
947 CALL trexio_error(rc)
951 DEALLOCATE (mo_coefficient)
952 DEALLOCATE (mo_energy)
953 DEALLOCATE (mo_occupation)
956 DEALLOCATE (mo_coefficient_im)
957 DEALLOCATE (mo_kpoint)
970 IF (
PRESENT(energy_derivative))
THEN
971 filename_de = trim(logger%iter_info%project_name)//
'-TREXIO.dEdP.dat'
973 ALLOCATE (dedp(nsgf, nsgf))
981 row_size=row_size, col_size=col_size, &
982 row_offset=row_offset, col_offset=col_offset)
987 dedp(row_offset + i - 1, col_offset + j - 1) = data_block(i, j)
995 CASE (dbcsr_type_symmetric)
997 CASE (dbcsr_type_antisymmetric)
999 CASE (dbcsr_type_no_symmetry)
1001 cpabort(
"Unknown matrix type for energy derivative")
1006 CALL para_env%sum(dedp)
1010 WRITE (output_unit,
"((T2,A,A))")
'TREXIO| Writing derivative file ', trim(filename_de)
1014 file_action=
"WRITE", &
1015 file_status=
"UNKNOWN", &
1016 unit_number=unit_de)
1017 WRITE (unit_de,
'(I0, 1X, I0)') nsgf, nsgf
1019 WRITE (unit_de,
'(*(1X, F15.8))') (dedp(cp2k_to_trexio_ang_mom(i), &
1020 cp2k_to_trexio_ang_mom(j)), j=1, nsgf)
1029 DEALLOCATE (shell_ang_mom)
1030 DEALLOCATE (cp2k_to_trexio_ang_mom)
1036 rc = trexio_close(f)
1037 CALL trexio_error(rc)
1041 mark_used(trexio_section)
1042 mark_used(energy_derivative)
1043 cpwarn(
'TREXIO support has not been enabled in this build.')
1045 CALL timestop(handle)
1056 SUBROUTINE read_trexio(qs_env, trexio_filename, mo_set_trexio, energy_derivative)
1058 CHARACTER(len=*),
INTENT(IN),
OPTIONAL :: trexio_filename
1059 TYPE(
mo_set_type),
INTENT(OUT),
DIMENSION(:),
POINTER,
OPTIONAL :: mo_set_trexio
1060 TYPE(
dbcsr_p_type),
INTENT(OUT),
DIMENSION(:),
POINTER,
OPTIONAL :: energy_derivative
1062 CHARACTER(LEN=*),
PARAMETER :: routinen =
'read_trexio'
1067 INTEGER :: output_unit, unit_de
1068 CHARACTER(len=default_path_length) :: filename, filename_de
1069 INTEGER(trexio_t) :: f
1070 INTEGER(trexio_exit_code) :: rc
1074 CHARACTER(LEN=2) :: element_symbol
1075 CHARACTER(LEN=2),
DIMENSION(:),
ALLOCATABLE :: label
1077 INTEGER :: ao_num, mo_num, nmo, nspins, ispin, nsgf, &
1078 save_cartesian, i, j, k, l, m, imo, ishell, &
1079 nshell, shell_num, nucleus_num, natoms, ikind, &
1080 iatom, nelectron, nrows, ncols, &
1081 row, col, row_size, col_size, &
1082 row_offset, col_offset, myprint
1083 INTEGER,
DIMENSION(2) :: nmo_spin, electron_num
1084 INTEGER,
DIMENSION(:),
ALLOCATABLE :: mo_spin, shell_ang_mom, trexio_to_cp2k_ang_mom
1086 REAL(kind=
dp) :: zeff, maxocc
1087 REAL(kind=
dp),
DIMENSION(:),
ALLOCATABLE :: mo_energy, mo_occupation, charge
1088 REAL(kind=
dp),
DIMENSION(:, :),
ALLOCATABLE :: mo_coefficient, mos_sgf, coord, dedp, temp
1089 REAL(kind=
dp),
DIMENSION(:, :),
POINTER :: data_block
1092 TYPE(
cp_fm_type),
POINTER :: mo_coeff_ref, mo_coeff_target
1095 TYPE(
dbcsr_p_type),
DIMENSION(:),
POINTER :: matrix_s => null()
1096 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: kind_set => null()
1097 TYPE(
mo_set_type),
DIMENSION(:),
POINTER :: mos => null()
1098 TYPE(
particle_type),
DIMENSION(:),
POINTER :: particle_set => null()
1102 CALL timeset(routinen, handle)
1107 myprint = logger%iter_info%print_level
1109 cpassert(
ASSOCIATED(qs_env))
1112 IF (.NOT.
PRESENT(trexio_filename))
THEN
1113 filename = trim(logger%iter_info%project_name)//
'-TREXIO.h5'
1114 filename_de = trim(logger%iter_info%project_name)//
'-TREXIO.dEdP.dat'
1116 filename = trim(trexio_filename)//
'.h5'
1117 filename_de = trim(trexio_filename)//
'.dEdP.dat'
1121 ionode = para_env%is_source()
1125 WRITE (output_unit,
"((T2,A,A))")
'TREXIO| Opening file named ', trim(filename)
1126 f = trexio_open(filename,
'r', trexio_hdf5, rc)
1127 CALL trexio_error(rc)
1130 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading molecule information...'
1132 rc = trexio_read_nucleus_num(f, nucleus_num)
1133 CALL trexio_error(rc)
1136 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading nuclear coordinates...'
1138 ALLOCATE (coord(3, nucleus_num))
1139 rc = trexio_read_nucleus_coord(f, coord)
1140 CALL trexio_error(rc)
1143 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading nuclear labels...'
1145 ALLOCATE (label(nucleus_num))
1146 rc = trexio_read_nucleus_label(f, label, 3)
1147 CALL trexio_error(rc)
1150 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading nuclear charges...'
1152 ALLOCATE (charge(nucleus_num))
1153 rc = trexio_read_nucleus_charge(f, charge)
1154 CALL trexio_error(rc)
1157 CALL get_qs_env(qs_env, particle_set=particle_set, qs_kind_set=kind_set, natom=natoms)
1160 cpassert(nucleus_num == natoms)
1162 DO iatom = 1, natoms
1165 cpassert(abs(coord(i, iatom) - particle_set(iatom)%r(i)) < 1.0e-6_dp)
1169 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, element_symbol=element_symbol, kind_number=ikind)
1171 cpassert(trim(element_symbol) == trim(label(iatom)))
1176 cpassert(charge(iatom) == zeff)
1179 WRITE (output_unit,
"((T2,A))")
'TREXIO| Molecule is the same as in qs_env'
1186 rc = trexio_read_ao_cartesian(f, save_cartesian)
1187 CALL trexio_error(rc)
1189 rc = trexio_read_ao_num(f, ao_num)
1190 CALL trexio_error(rc)
1192 rc = trexio_read_basis_shell_num(f, shell_num)
1193 CALL trexio_error(rc)
1196 CALL para_env%bcast(save_cartesian, para_env%source)
1197 CALL para_env%bcast(ao_num, para_env%source)
1198 CALL para_env%bcast(shell_num, para_env%source)
1200 IF (save_cartesian == 1)
THEN
1201 cpabort(
'Reading Cartesian AOs is not yet supported.')
1205 CALL get_qs_env(qs_env, qs_kind_set=kind_set)
1207 cpassert(ao_num == nsgf)
1208 cpassert(shell_num == nshell)
1210 ALLOCATE (shell_ang_mom(shell_num))
1211 shell_ang_mom(:) = 0
1215 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading shell angular momenta...'
1217 rc = trexio_read_basis_shell_ang_mom(f, shell_ang_mom)
1218 CALL trexio_error(rc)
1221 CALL para_env%bcast(shell_ang_mom, para_env%source)
1226 ALLOCATE (trexio_to_cp2k_ang_mom(nsgf))
1228 DO ishell = 1, shell_num
1229 l = shell_ang_mom(ishell)
1231 m = (-1)**k*floor(real(k, kind=
dp)/2.0_dp)
1232 trexio_to_cp2k_ang_mom(i + l + 1 + m) = i + k
1239 IF (
PRESENT(mo_set_trexio))
THEN
1240 IF (output_unit > 1)
THEN
1241 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading molecular orbitals...'
1247 rc = trexio_read_mo_num(f, mo_num)
1248 CALL trexio_error(rc)
1250 rc = trexio_read_electron_up_num(f, electron_num(1))
1251 CALL trexio_error(rc)
1253 rc = trexio_read_electron_dn_num(f, electron_num(2))
1254 CALL trexio_error(rc)
1258 CALL para_env%bcast(mo_num, para_env%source)
1259 CALL para_env%bcast(electron_num, para_env%source)
1262 CALL get_qs_env(qs_env, mos=mos, dft_control=dft_control)
1263 nspins = dft_control%nspins
1265 DO ispin = 1, nspins
1267 nmo_spin(ispin) = nmo
1269 cpassert(mo_num == sum(nmo_spin))
1271 ALLOCATE (mo_coefficient(ao_num, mo_num))
1272 ALLOCATE (mo_energy(mo_num))
1273 ALLOCATE (mo_occupation(mo_num))
1274 ALLOCATE (mo_spin(mo_num))
1276 mo_coefficient(:, :) = 0.0_dp
1277 mo_energy(:) = 0.0_dp
1278 mo_occupation(:) = 0.0_dp
1284 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading MO coefficients...'
1286 rc = trexio_read_mo_coefficient(f, mo_coefficient)
1287 CALL trexio_error(rc)
1290 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading MO energies...'
1292 rc = trexio_read_mo_energy(f, mo_energy)
1293 CALL trexio_error(rc)
1296 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading MO occupations...'
1298 rc = trexio_read_mo_occupation(f, mo_occupation)
1299 CALL trexio_error(rc)
1302 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading MO spins...'
1304 rc = trexio_read_mo_spin(f, mo_spin)
1305 CALL trexio_error(rc)
1309 CALL para_env%bcast(mo_coefficient, para_env%source)
1310 CALL para_env%bcast(mo_energy, para_env%source)
1311 CALL para_env%bcast(mo_occupation, para_env%source)
1312 CALL para_env%bcast(mo_spin, para_env%source)
1316 DO ispin = 1, nspins
1318 imo = (ispin - 1)*nmo_spin(1)
1320 nmo = nmo_spin(ispin)
1322 ALLOCATE (mos_sgf(nsgf, nmo))
1323 mos_sgf(:, :) = 0.0_dp
1327 mos_sgf(i, :) = mo_coefficient(trexio_to_cp2k_ang_mom(i), imo + 1:imo + nmo)
1330 IF (nspins == 1)
THEN
1332 nelectron = electron_num(1) + electron_num(2)
1335 nelectron = electron_num(ispin)
1338 CALL allocate_mo_set(mo_set_trexio(ispin), nsgf, nmo, nelectron, 0.0_dp, maxocc, 0.0_dp)
1340 CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff_ref)
1341 CALL init_mo_set(mo_set_trexio(ispin), fm_ref=mo_coeff_ref, name=
"TREXIO MOs")
1343 CALL get_mo_set(mo_set_trexio(ispin), mo_coeff=mo_coeff_target)
1346 cpassert(mo_spin(j) == ispin - 1)
1347 mo_set_trexio(ispin)%eigenvalues(j) = mo_energy(imo + j)
1348 mo_set_trexio(ispin)%occupation_numbers(j) = mo_occupation(imo + j)
1354 DEALLOCATE (mos_sgf)
1357 DEALLOCATE (mo_coefficient)
1358 DEALLOCATE (mo_energy)
1359 DEALLOCATE (mo_occupation)
1360 DEALLOCATE (mo_spin)
1365 IF (
PRESENT(energy_derivative))
THEN
1366 IF (output_unit > 1)
THEN
1367 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading energy derivatives...'
1374 ALLOCATE (temp(nsgf, nsgf))
1380 CALL open_file(file_name=filename_de, file_status=
"OLD", unit_number=unit_de)
1382 cpabort(
"Energy derivatives file "//trim(filename_de)//
" not found")
1387 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading header information...'
1389 READ (unit_de, *) nrows, ncols
1391 WRITE (output_unit,
"((T2,A))")
'TREXIO| Check size of dEdP matrix...'
1393 cpassert(nrows == nsgf)
1394 cpassert(ncols == nsgf)
1398 WRITE (output_unit,
"((T2,A))")
'TREXIO| Reading dEdP matrix...'
1402 READ (unit_de, *) (temp(i, j), j=1, ncols)
1409 CALL para_env%bcast(temp, para_env%source)
1412 ALLOCATE (dedp(nsgf, nsgf))
1419 dedp(i, j) = temp(trexio_to_cp2k_ang_mom(i), trexio_to_cp2k_ang_mom(j))
1428 DO ispin = 1, nspins
1429 ALLOCATE (energy_derivative(ispin)%matrix)
1432 CALL dbcsr_copy(energy_derivative(ispin)%matrix, matrix_s(1)%matrix, &
1433 name=
'Energy Derivative', keep_sparsity=.false.)
1434 CALL dbcsr_set(energy_derivative(ispin)%matrix, 0.0_dp)
1439 row_size=row_size, col_size=col_size, &
1440 row_offset=row_offset, col_offset=col_offset)
1445 data_block(i, j) = dedp(row_offset + i - 1, col_offset + j - 1)
1456 IF (
ALLOCATED(shell_ang_mom))
DEALLOCATE (shell_ang_mom)
1457 IF (
ALLOCATED(trexio_to_cp2k_ang_mom))
DEALLOCATE (trexio_to_cp2k_ang_mom)
1461 WRITE (output_unit,
"((T2,A,A))")
'TREXIO| Closing file named ', trim(filename)
1462 rc = trexio_close(f)
1463 CALL trexio_error(rc)
1468 mark_used(trexio_filename)
1469 mark_used(mo_set_trexio)
1470 mark_used(energy_derivative)
1471 cpwarn(
'TREXIO support has not been enabled in this build.')
1472 cpabort(
'TREXIO Not Available')
1474 CALL timestop(handle)
1483 SUBROUTINE trexio_error(rc)
1484 INTEGER(trexio_exit_code),
INTENT(IN) :: rc
1486 CHARACTER(LEN=128) :: err_msg
1488 IF (rc /= trexio_success)
THEN
1489 CALL trexio_string_of_error(rc, err_msg)
1490 cpabort(
'TREXIO Error: '//trim(err_msg))
1493 END SUBROUTINE trexio_error
1501 SUBROUTINE nuclear_repulsion_energy(particle_set, kind_set, e_nn)
1503 POINTER :: particle_set
1506 REAL(kind=
dp),
INTENT(OUT) :: e_nn
1508 INTEGER :: i, ikind, j, jkind, natoms
1509 REAL(kind=
dp) :: r_ij, zeff_i, zeff_j
1511 natoms =
SIZE(particle_set)
1516 DO j = i + 1, natoms
1517 r_ij = norm2(particle_set(i)%r - particle_set(j)%r)
1522 e_nn = e_nn + zeff_i*zeff_j/r_ij
1526 END SUBROUTINE nuclear_repulsion_energy
1535 SUBROUTINE spherical_to_cartesian_mo(mos_sgf, particle_set, qs_kind_set, mos_cgf)
1536 REAL(kind=
dp),
DIMENSION(:, :),
INTENT(IN) :: mos_sgf
1538 POINTER :: particle_set
1540 POINTER :: qs_kind_set
1541 REAL(kind=
dp),
DIMENSION(:, :),
INTENT(OUT) :: mos_cgf
1543 INTEGER :: iatom, icgf, ikind, iset, isgf, ishell, &
1544 lshell, ncgf, nmo, nset, nsgf
1545 INTEGER,
DIMENSION(:),
POINTER :: nshell
1546 INTEGER,
DIMENSION(:, :),
POINTER :: l
1552 nmo =
SIZE(mos_sgf, 2)
1557 DO iatom = 1,
SIZE(particle_set)
1558 NULLIFY (orb_basis_set)
1559 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
1560 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
1562 IF (
ASSOCIATED(orb_basis_set))
THEN
1568 DO ishell = 1, nshell(iset)
1569 lshell = l(ishell, iset)
1570 CALL dgemm(
"T",
"N",
nco(lshell), nmo,
nso(lshell), 1.0_dp, &
1572 mos_sgf(isgf, 1), nsgf, 0.0_dp, &
1573 mos_cgf(icgf, 1), ncgf)
1574 icgf = icgf +
nco(lshell)
1575 isgf = isgf +
nso(lshell)
1580 cpabort(
"Unknown basis set type")
1584 END SUBROUTINE spherical_to_cartesian_mo
static void dgemm(const char transa, const char transb, const int m, const int n, const int k, const double alpha, const double *a, const int lda, const double *b, const int ldb, const double beta, double *c, const int ldc)
Convenient wrapper to hide Fortran nature of dgemm_, swapping a and b.
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind(atomic_kind, fist_potential, element_symbol, name, mass, kind_number, natom, atom_list, rcov, rvdw, z, qeff, apol, cpol, mm_radius, shell, shell_active, damping)
Get attributes of an atomic kind.
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius, npgf_seg_sum)
...
Handles all functions related to the CELL.
some minimal info about CP2K, including its version and license
character(len= *), parameter, public cp2k_version
methods related to the blacs parallel environment
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
subroutine, public dbcsr_iterator_next_block(iterator, row, column, block, block_number_argument_has_been_removed, row_size, col_size, row_offset, col_offset)
...
character function, public dbcsr_get_matrix_type(matrix)
...
logical function, public dbcsr_iterator_blocks_left(iterator)
...
subroutine, public dbcsr_iterator_stop(iterator)
...
subroutine, public dbcsr_copy(matrix_b, matrix_a, name, keep_sparsity, keep_imaginary)
...
subroutine, public dbcsr_iterator_start(iterator, matrix, shared, dynamic, dynamic_byrows)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_reserve_all_blocks(matrix)
Reserves all blocks.
DBCSR operations in CP2K.
subroutine, public copy_dbcsr_to_fm(matrix, fm)
Copy a DBCSR matrix to a BLACS matrix.
subroutine, public cp_dbcsr_write_sparse_matrix(sparse_matrix, before, after, qs_env, para_env, first_row, last_row, first_col, last_col, scale, output_unit, omit_headers)
...
Utility routines to open and close files. Tracking of preconnections.
subroutine, public open_file(file_name, file_status, file_form, file_action, file_position, file_pad, unit_number, debug, skip_get_unit_number, file_access)
Opens the requested file using a free unit number.
subroutine, public close_file(unit_number, file_status, keep_preconnection)
Close an open file given by its logical unit number. Optionally, keep the file and unit preconnected.
logical function, public file_exists(file_name)
Checks if file exists, considering also the file discovery mechanism.
represent the structure of a full matrix
subroutine, public cp_fm_struct_create(fmstruct, para_env, context, nrow_global, ncol_global, nrow_block, ncol_block, descriptor, first_p_pos, local_leading_dimension, template_fmstruct, square_blocks, force_block)
allocates and initializes a full matrix structure
subroutine, public cp_fm_struct_release(fmstruct)
releases a full matrix structure
represent a full matrix distributed on many processors
subroutine, public cp_fm_get_info(matrix, name, nrow_global, ncol_global, nrow_block, ncol_block, nrow_local, ncol_local, row_indices, col_indices, local_data, context, nrow_locals, ncol_locals, matrix_struct, para_env)
returns all kind of information about the full matrix
subroutine, public cp_fm_to_fm_submat_general(source, destination, nrows, ncols, s_firstrow, s_firstcol, d_firstrow, d_firstcol, global_context)
General copy of a submatrix of fm matrix to a submatrix of another fm matrix. The two matrices can ha...
subroutine, public cp_fm_set_all(matrix, alpha, beta)
set all elements of a matrix to the same value, and optionally the diagonal to a different one
subroutine, public cp_fm_get_submatrix(fm, target_m, start_row, start_col, n_rows, n_cols, transpose)
gets a submatrix of a full matrix op(target_m)(1:n_rows,1:n_cols) =fm(start_row:start_row+n_rows,...
subroutine, public cp_fm_set_element(matrix, irow_global, icol_global, alpha)
sets an element of a matrix
subroutine, public cp_fm_create(matrix, matrix_struct, name, use_sp)
creates a new full matrix with the given structure
various routines to log and control the output. The idea is that decisions about where to log should ...
integer function, public cp_logger_get_default_io_unit(logger)
returns the unit nr for the ionode (-1 on all other processors) skips as well checks if the procs cal...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer, parameter, public medium_print_level
Definition of the atomic potential types.
Defines the basic variable types.
integer, parameter, public dp
integer, parameter, public default_path_length
Types and basic routines needed for a kpoint calculation.
subroutine, public get_kpoint_env(kpoint_env, nkpoint, wkp, xkp, is_local, mos)
Get information from a single kpoint environment.
subroutine, public get_kpoint_info(kpoint, kp_scheme, nkp_grid, kp_shift, symmetry, verbose, full_grid, use_real_wfn, eps_geo, parallel_group_size, kp_range, nkp, xkp, wkp, para_env, blacs_env_all, para_env_kp, para_env_inter_kp, blacs_env, kp_env, kp_aux_env, mpools, iogrp, nkp_groups, kp_dist, cell_to_index, index_to_cell, sab_nl, sab_nl_nosym)
Retrieve information from a kpoint environment.
Definition of mathematical constants and functions.
real(kind=dp), parameter, public pi
real(kind=dp), parameter, public fourpi
Collection of simple mathematical functions and subroutines.
subroutine, public symmetrize_matrix(a, option)
Symmetrize the matrix a.
Interface to the message passing library MPI.
Provides Cartesian and spherical orbital pointers and indices.
integer, dimension(:), allocatable, public nco
integer, dimension(:), allocatable, public nso
Define the data structure for the particle information.
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs)
Get the QUICKSTEP environment.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public get_qs_kind_set(qs_kind_set, all_potential_present, tnadd_potential_present, gth_potential_present, sgp_potential_present, paw_atom_present, dft_plus_u_atom_present, maxcgf, maxsgf, maxco, maxco_proj, maxgtops, maxlgto, maxlprj, maxnset, maxsgf_set, ncgf, npgf, nset, nsgf, nshell, maxpol, maxlppl, maxlppnl, maxppnl, nelectron, maxder, max_ngrid_rad, max_sph_harm, maxg_iso_not0, lmax_rho0, basis_rcut, basis_type, total_zeff_corr, npgf_seg)
Get attributes of an atomic kind set.
Definition and initialisation of the mo data type.
subroutine, public allocate_mo_set(mo_set, nao, nmo, nelectron, n_el_f, maxocc, flexible_electron_count)
Allocates a mo set and partially initializes it (nao,nmo,nelectron, and flexible_electron_count are v...
subroutine, public get_mo_set(mo_set, maxocc, homo, lfomo, nao, nelectron, n_el_f, nmo, eigenvalues, occupation_numbers, mo_coeff, mo_coeff_b, uniform_occupation, kts, mu, flexible_electron_count)
Get the components of a MO set data structure.
subroutine, public init_mo_set(mo_set, fm_pool, fm_ref, fm_struct, name)
initializes an allocated mo_set. eigenvalues, mo_coeff, occupation_numbers are valid only after this ...
The module to read/write TREX IO files for interfacing CP2K with other programs.
subroutine, public write_trexio(qs_env, trexio_section, energy_derivative)
Write a trexio file.
subroutine, public read_trexio(qs_env, trexio_filename, mo_set_trexio, energy_derivative)
Read a trexio file.
Type defining parameters related to the simulation cell.
represent a blacs multidimensional parallel environment (for the mpi corrispective see cp_paratypes/m...
keeps the information about the structure of a full matrix
type of a logger, at the moment it contains just a print level starting at which level it should be l...
Contains information about kpoints.
stores all the informations relevant to an mpi environment
Provides all information about a quickstep kind.