(git:ed6f26b)
Loading...
Searching...
No Matches
atom_pseudo.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
11 USE atom_fit, ONLY: atom_fit_pseudo
18 USE atom_output, ONLY: atom_print_basis,&
23 USE atom_types, ONLY: &
36 USE input_constants, ONLY: do_analytic,&
42 USE kinds, ONLY: default_string_length,&
43 dp
44 USE periodic_table, ONLY: nelem,&
45 ptable
46 USE physcon, ONLY: bohr
47#include "./base/base_uses.f90"
48
49 IMPLICIT NONE
50 PRIVATE
51 PUBLIC :: atom_pseudo_opt
52
53 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_pseudo'
54
55! **************************************************************************************************
56
57CONTAINS
58
59! **************************************************************************************************
60
61! **************************************************************************************************
62!> \brief ...
63!> \param atom_section ...
64! **************************************************************************************************
65 SUBROUTINE atom_pseudo_opt(atom_section)
66 TYPE(section_vals_type), POINTER :: atom_section
67
68 CHARACTER(len=*), PARAMETER :: routinen = 'atom_pseudo_opt'
69
70 CHARACTER(LEN=2) :: elem
71 CHARACTER(LEN=default_string_length), &
72 DIMENSION(:), POINTER :: tmpstringlist
73 INTEGER :: ads, do_eric, do_erie, handle, i, im, &
74 in, iw, k, l, maxl, mb, method, mo, &
75 n_meth, n_rep, nr_gh, reltyp, zcore, &
76 zval, zz
77 INTEGER, DIMENSION(0:lmat) :: maxn
78 INTEGER, DIMENSION(:), POINTER :: cn
79 LOGICAL :: do_gh, eri_c, eri_e, graph, pp_calc
80 REAL(kind=dp) :: ne, nm
81 REAL(kind=dp), DIMENSION(0:lmat, 10) :: pocc
82 TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
83 TYPE(atom_integrals), POINTER :: ae_int, pp_int
84 TYPE(atom_optimization_type) :: optimization
85 TYPE(atom_orbitals), POINTER :: orbitals
86 TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info, atom_refs
87 TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
88 TYPE(atom_state), POINTER :: state, statepp
89 TYPE(cp_logger_type), POINTER :: logger
90 TYPE(section_vals_type), POINTER :: basis_section, method_section, &
91 opt_section, potential_section, &
92 powell_section, xc_section
93
94 CALL timeset(routinen, handle)
95
96 ! What atom do we calculate
97 CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
98 CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
99 zz = 0
100 DO i = 1, nelem
101 IF (ptable(i)%symbol == elem) THEN
102 zz = i
103 EXIT
104 END IF
105 END DO
106 IF (zz /= 1) zval = zz
107
108 ! read and set up information on the basis sets
109 ALLOCATE (ae_basis, pp_basis)
110 basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
111 NULLIFY (ae_basis%grid)
112 CALL init_atom_basis(ae_basis, basis_section, zval, "AA")
113 NULLIFY (pp_basis%grid)
114 basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
115 CALL init_atom_basis(pp_basis, basis_section, zval, "AP")
116
117 ! print general and basis set information
118 logger => cp_get_default_logger()
119 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
120 IF (iw > 0) CALL atom_print_info(zval, "Atomic Energy Calculation", iw)
121 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
122 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
123 IF (iw > 0) THEN
124 CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
125 CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
126 END IF
127 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
128
129 ! read and setup information on the pseudopotential
130 NULLIFY (potential_section)
131 potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
132 ALLOCATE (ae_pot, p_pot)
133 CALL init_atom_potential(p_pot, potential_section, zval)
134 CALL init_atom_potential(ae_pot, potential_section, -1)
135 IF (.NOT. p_pot%confinement .AND. .NOT. ae_pot%confinement) THEN
136 !set default confinement potential
137 p_pot%confinement = .true.
138 p_pot%conf_type = poly_conf
139 p_pot%scon = 2.0_dp
140 p_pot%acon = 0.5_dp
141 ! this seems to be the default in the old code
142 p_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
143 ae_pot%confinement = .true.
144 ae_pot%conf_type = poly_conf
145 ae_pot%scon = 2.0_dp
146 ae_pot%acon = 0.5_dp
147 ! this seems to be the default in the old code
148 ae_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
149 END IF
150
151 ! if the ERI's are calculated analytically, we have to precalculate them
152 eri_c = .false.
153 CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
154 IF (do_eric == do_analytic) eri_c = .true.
155 eri_e = .false.
156 CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
157 IF (do_erie == do_analytic) eri_e = .true.
158 CALL section_vals_val_get(atom_section, "USE_GAUSS_HERMITE", l_val=do_gh)
159 CALL section_vals_val_get(atom_section, "GRID_POINTS_GH", i_val=nr_gh)
160
161 ! information on the states to be calculated
162 CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
163 maxn = 0
164 CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
165 DO in = 1, min(SIZE(cn), 4)
166 maxn(in - 1) = cn(in)
167 END DO
168 DO in = 0, lmat
169 maxn(in) = min(maxn(in), ae_basis%nbas(in))
170 END DO
171
172 ! read optimization section
173 opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
174 CALL read_atom_opt_section(optimization, opt_section)
175
176 ! Check for the total number of electron configurations to be calculated
177 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
178 ! Check for the total number of method types to be calculated
179 method_section => section_vals_get_subs_vals(atom_section, "METHOD")
180 CALL section_vals_get(method_section, n_repetition=n_meth)
181
182 ! integrals
183 ALLOCATE (ae_int, pp_int)
184
185 ALLOCATE (atom_info(n_rep, n_meth), atom_refs(n_rep, n_meth))
186
187 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
188 IF (iw > 0) THEN
189 WRITE (iw, '(/," ",79("*"))')
190 WRITE (iw, '(" ",26("*"),A,25("*"))') " Calculate Reference States "
191 WRITE (iw, '(" ",79("*"))')
192 END IF
193 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
194
195 DO in = 1, n_rep
196 DO im = 1, n_meth
197
198 NULLIFY (atom_info(in, im)%atom, atom_refs(in, im)%atom)
199 CALL create_atom_type(atom_info(in, im)%atom)
200 CALL create_atom_type(atom_refs(in, im)%atom)
201
202 atom_info(in, im)%atom%optimization = optimization
203 atom_refs(in, im)%atom%optimization = optimization
204
205 atom_info(in, im)%atom%z = zval
206 atom_refs(in, im)%atom%z = zval
207 xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
208 atom_info(in, im)%atom%xc_section => xc_section
209 atom_refs(in, im)%atom%xc_section => xc_section
210
211 ALLOCATE (state, statepp)
212
213 ! get the electronic configuration
214 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
215 c_vals=tmpstringlist)
216 ! all electron configurations have to be with full core
217 pp_calc = index(tmpstringlist(1), "CORE") /= 0
218 cpassert(.NOT. pp_calc)
219
220 ! set occupations
221 CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
222 state%maxl_occ = get_maxl_occ(state%occ)
223 state%maxn_occ = get_maxn_occ(state%occ)
224 ! set number of states to be calculated
225 state%maxl_calc = max(maxl, state%maxl_occ)
226 state%maxl_calc = min(lmat, state%maxl_calc)
227 state%maxn_calc = 0
228 DO k = 0, state%maxl_calc
229 ads = 2
230 IF (state%maxn_occ(k) == 0) ads = 1
231 state%maxn_calc(k) = max(maxn(k), state%maxn_occ(k) + ads)
232 state%maxn_calc(k) = min(state%maxn_calc(k), ae_basis%nbas(k))
233 END DO
234 state%core = 0._dp
235 CALL set_atom(atom_refs(in, im)%atom, zcore=zval, pp_calc=.false.)
236
237 IF (state%multiplicity /= -1) THEN
238 ! set alpha and beta occupations
239 state%occa = 0._dp
240 state%occb = 0._dp
241 DO l = 0, lmat
242 nm = real((2*l + 1), kind=dp)
243 DO k = 1, 10
244 ne = state%occupation(l, k)
245 IF (ne == 0._dp) THEN !empty shell
246 EXIT !assume there are no holes
247 ELSEIF (ne == 2._dp*nm) THEN !closed shell
248 state%occa(l, k) = nm
249 state%occb(l, k) = nm
250 ELSEIF (state%multiplicity == -2) THEN !High spin case
251 state%occa(l, k) = min(ne, nm)
252 state%occb(l, k) = max(0._dp, ne - nm)
253 ELSE
254 state%occa(l, k) = 0.5_dp*(ne + state%multiplicity - 1._dp)
255 state%occb(l, k) = ne - state%occa(l, k)
256 END IF
257 END DO
258 END DO
259 END IF
260
261 ! set occupations for pseudopotential calculation
262 CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
263 CALL atom_set_occupation(tmpstringlist, statepp%core, pocc)
264 zcore = zval - nint(sum(statepp%core))
265 CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.true.)
266
267 statepp%occ = state%occ - statepp%core
268 statepp%occupation = 0._dp
269 DO l = 0, lmat
270 k = 0
271 DO i = 1, 10
272 IF (statepp%occ(l, i) /= 0._dp) THEN
273 k = k + 1
274 statepp%occupation(l, k) = state%occ(l, i)
275 IF (state%multiplicity /= -1) THEN
276 statepp%occa(l, k) = state%occa(l, i) - statepp%core(l, i)/2
277 statepp%occb(l, k) = state%occb(l, i) - statepp%core(l, i)/2
278 END IF
279 END IF
280 END DO
281 END DO
282
283 statepp%maxl_occ = get_maxl_occ(statepp%occ)
284 statepp%maxn_occ = get_maxn_occ(statepp%occ)
285 statepp%maxl_calc = state%maxl_calc
286 statepp%maxn_calc = 0
287 maxn = get_maxn_occ(statepp%core)
288 DO k = 0, statepp%maxl_calc
289 statepp%maxn_calc(k) = state%maxn_calc(k) - maxn(k)
290 statepp%maxn_calc(k) = min(statepp%maxn_calc(k), pp_basis%nbas(k))
291 END DO
292 statepp%multiplicity = state%multiplicity
293
294 CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_section=im)
295 CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
296 CALL set_atom(atom_info(in, im)%atom, method_type=method)
297 CALL set_atom(atom_refs(in, im)%atom, method_type=method, relativistic=reltyp)
298
299 ! calculate integrals: pseudopotential basis
300 ! general integrals
301 CALL atom_int_setup(pp_int, pp_basis, potential=p_pot, eri_coulomb=eri_c, eri_exchange=eri_e)
302 !
303 NULLIFY (pp_int%tzora, pp_int%hdkh)
304 ! potential
305 CALL atom_ppint_setup(pp_int, pp_basis, potential=p_pot)
306 !
307 CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, integrals=pp_int, potential=p_pot)
308 statepp%maxn_calc(:) = min(statepp%maxn_calc(:), pp_basis%nbas(:))
309 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
310
311 ! calculate integrals: all electron basis
312 ! general integrals
313 CALL atom_int_setup(ae_int, ae_basis, potential=ae_pot, &
314 eri_coulomb=eri_c, eri_exchange=eri_e)
315 ! potential
316 CALL atom_ppint_setup(ae_int, ae_basis, potential=ae_pot)
317 ! relativistic correction terms
318 CALL atom_relint_setup(ae_int, ae_basis, reltyp, zcore=real(zval, dp))
319 !
320 CALL set_atom(atom_refs(in, im)%atom, basis=ae_basis, integrals=ae_int, potential=ae_pot)
321 state%maxn_calc(:) = min(state%maxn_calc(:), ae_basis%nbas(:))
322 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
323
324 CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
325 exchange_integral_type=do_erie)
326 CALL set_atom(atom_refs(in, im)%atom, coulomb_integral_type=do_eric, &
327 exchange_integral_type=do_erie)
328 atom_info(in, im)%atom%hfx_pot%do_gh = do_gh
329 atom_info(in, im)%atom%hfx_pot%nr_gh = nr_gh
330 atom_refs(in, im)%atom%hfx_pot%do_gh = do_gh
331 atom_refs(in, im)%atom%hfx_pot%nr_gh = nr_gh
332
333 CALL set_atom(atom_info(in, im)%atom, state=statepp)
334 NULLIFY (orbitals)
335 mo = maxval(statepp%maxn_calc)
336 mb = maxval(atom_info(in, im)%atom%basis%nbas)
337 CALL create_atom_orbs(orbitals, mb, mo)
338 CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
339
340 CALL set_atom(atom_refs(in, im)%atom, state=state)
341 NULLIFY (orbitals)
342 mo = maxval(state%maxn_calc)
343 mb = maxval(atom_refs(in, im)%atom%basis%nbas)
344 CALL create_atom_orbs(orbitals, mb, mo)
345 CALL set_atom(atom_refs(in, im)%atom, orbitals=orbitals)
346
347 IF (atom_consistent_method(atom_refs(in, im)%atom%method_type, atom_refs(in, im)%atom%state%multiplicity)) THEN
348 !Print method info
349 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
350 CALL atom_print_method(atom_refs(in, im)%atom, iw)
351 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
352 !Calculate the electronic structure
353 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
354 CALL calculate_atom(atom_refs(in, im)%atom, iw)
355 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
356 END IF
357 END DO
358 END DO
359
360 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
361 IF (iw > 0) THEN
362 WRITE (iw, '(/," ",79("*"))')
363 WRITE (iw, '(" ",21("*"),A,21("*"))') " Optimize Pseudopotential Parameters "
364 WRITE (iw, '(" ",79("*"))')
365 END IF
366 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
367 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
368 IF (iw > 0) THEN
369 CALL atom_print_potential(p_pot, iw)
370 END IF
371 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
372 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
373 IF (iw > 0) THEN
374 powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
375 CALL atom_fit_pseudo(atom_info, atom_refs, p_pot, iw, powell_section)
376 END IF
377 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
378 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
379 IF (iw > 0) THEN
380 CALL atom_print_potential(p_pot, iw)
381 END IF
382 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
383
384 ! Print out the orbitals if requested
385 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%ORBITALS", extension=".log")
386 CALL section_vals_val_get(atom_section, "PRINT%ORBITALS%XMGRACE", l_val=graph)
387 IF (iw > 0) THEN
388 DO in = 1, n_rep
389 DO im = 1, n_meth
390 CALL atom_print_orbitals(atom_info(in, im)%atom, iw, xmgrace=graph)
391 END DO
392 END DO
393 END IF
394 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%ORBITALS")
395
396 ! clean up
397 CALL atom_int_release(ae_int)
398 CALL atom_ppint_release(ae_int)
399 CALL atom_relint_release(ae_int)
400
401 CALL atom_int_release(pp_int)
402 CALL atom_ppint_release(pp_int)
403 CALL atom_relint_release(pp_int)
404
405 CALL release_atom_basis(ae_basis)
406 CALL release_atom_basis(pp_basis)
407
408 CALL release_atom_potential(p_pot)
409 CALL release_atom_potential(ae_pot)
410
411 DO in = 1, n_rep
412 DO im = 1, n_meth
413 CALL release_atom_type(atom_info(in, im)%atom)
414 CALL release_atom_type(atom_refs(in, im)%atom)
415 END DO
416 END DO
417 DEALLOCATE (atom_info, atom_refs)
418
419 DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
420
421 CALL timestop(handle)
422
423 END SUBROUTINE atom_pseudo_opt
424
425! **************************************************************************************************
426
427END MODULE atom_pseudo
program graph
Program to Map on grid the hills spawned during a metadynamics run.
Definition graph.F:19
subroutine, public calculate_atom(atom, iw, noguess, converged)
General routine to perform electronic structure atomic calculations.
routines that fit parameters for /from atomic calculations
Definition atom_fit.F:11
subroutine, public atom_fit_pseudo(atom_info, atom_refs, ppot, iunit, powell_section)
...
Definition atom_fit.F:504
Calculate the atomic operator matrices.
subroutine, public atom_ppint_release(integrals)
Release memory allocated for atomic integrals (core electrons).
subroutine, public atom_int_setup(integrals, basis, potential, eri_coulomb, eri_exchange, all_nu)
Set up atomic integrals.
subroutine, public atom_relint_setup(integrals, basis, reltyp, zcore, alpha)
...
subroutine, public atom_relint_release(integrals)
Release memory allocated for atomic integrals (relativistic effects).
subroutine, public atom_ppint_setup(integrals, basis, potential)
...
subroutine, public atom_int_release(integrals)
Release memory allocated for atomic integrals (valence electrons).
Routines that print various information about an atomic kind.
Definition atom_output.F:11
subroutine, public atom_print_orbitals(atom, iw, xmgrace)
Print atomic orbitals.
subroutine, public atom_print_basis(atom_basis, iw, title)
Print atomic basis set.
subroutine, public atom_print_method(atom, iw)
Print information about the electronic structure method in use.
subroutine, public atom_print_potential(potential, iw)
Print information about the pseudo-potential.
subroutine, public atom_print_info(zval, info, iw)
Print an information string related to the atomic kind.
Definition atom_output.F:69
subroutine, public atom_pseudo_opt(atom_section)
...
Definition atom_pseudo.F:66
Define the atom type and its sub types.
Definition atom_types.F:15
subroutine, public read_atom_opt_section(optimization, opt_section)
...
subroutine, public create_atom_type(atom)
...
Definition atom_types.F:944
subroutine, public release_atom_type(atom)
...
Definition atom_types.F:968
subroutine, public release_atom_potential(potential)
...
subroutine, public init_atom_basis(basis, basis_section, zval, btyp)
Initialize the basis for the atomic code.
Definition atom_types.F:375
integer, parameter, public lmat
Definition atom_types.F:67
subroutine, public set_atom(atom, basis, state, integrals, orbitals, potential, zcore, pp_calc, do_zmp, doread, read_vxc, method_type, relativistic, coulomb_integral_type, exchange_integral_type, fmat)
...
subroutine, public init_atom_potential(potential, potential_section, zval)
...
subroutine, public release_atom_basis(basis)
...
Definition atom_types.F:910
subroutine, public create_atom_orbs(orbs, mbas, mo)
...
Some basic routines for atomic calculations.
Definition atom_utils.F:15
pure logical function, public atom_consistent_method(method, multiplicity)
Check that the atomic multiplicity is consistent with the electronic structure method.
pure integer function, dimension(0:lmat), public get_maxn_occ(occupation)
Return the maximum principal quantum number of occupied orbitals.
Definition atom_utils.F:301
subroutine, public atom_set_occupation(ostring, occupation, wfnocc, multiplicity)
Set occupation of atomic orbitals.
Definition atom_utils.F:103
pure integer function, public get_maxl_occ(occupation)
Return the maximum orbital quantum number of occupied orbitals.
Definition atom_utils.F:281
various routines to log and control the output. The idea is that decisions about where to log should ...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer function, public cp_print_key_unit_nr(logger, basis_section, print_key_path, extension, middle_name, local, log_filename, ignore_should_output, file_form, file_position, file_action, file_status, do_backup, on_file, is_new_file, mpi_io, fout)
...
subroutine, public cp_print_key_finished_output(unit_nr, logger, basis_section, print_key_path, local, ignore_should_output, on_file, mpi_io)
should be called after you finish working with a unit obtained with cp_print_key_unit_nr,...
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public do_analytic
integer, parameter, public poly_conf
objects that represent the structure of input sections and the data contained in an input section
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
Periodic Table related data definitions.
type(atom), dimension(0:nelem), public ptable
integer, parameter, public nelem
Definition of physical constants:
Definition physcon.F:68
real(kind=dp), parameter, public bohr
Definition physcon.F:147
Routines to facilitate writing XMGRACE files.
Definition xmgrace.F:14
Provides all information about a basis set.
Definition atom_types.F:78
Information on optimization procedure.
Definition atom_types.F:280
Holds atomic orbitals and energies.
Definition atom_types.F:234
Provides all information on states and occupation.
Definition atom_types.F:195
type of a logger, at the moment it contains just a print level starting at which level it should be l...