41#include "./base/base_uses.f90"
61 CHARACTER(len=*),
PARAMETER :: routinen =
'pao_param_init_gth'
63 INTEGER :: acol, arow, handle, iatom,
idx, ikind, &
64 iterm, jatom, maxl, n, natoms
65 INTEGER,
DIMENSION(:),
POINTER :: blk_sizes_pri, col_blk_size, nterms, &
67 REAL(
dp),
DIMENSION(:, :),
POINTER :: block_v_term, vec_v_terms
74 CALL timeset(routinen, handle)
79 qs_kind_set=qs_kind_set, &
80 particle_set=particle_set)
83 ALLOCATE (row_blk_size(natoms), col_blk_size(natoms), nterms(natoms))
85 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
94 CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=blk_sizes_pri)
95 col_blk_size = sum(nterms)
96 row_blk_size = blk_sizes_pri**2
98 name=
"PAO matrix_V_terms", &
99 dist=pao%diag_distribution, &
101 row_blk_size=row_blk_size, &
102 col_blk_size=col_blk_size)
104 CALL dbcsr_set(pao%matrix_V_terms, 0.0_dp)
112 iatom = arow; cpassert(arow == acol)
113 n = blk_sizes_pri(iatom)
115 IF (jatom == iatom) cycle
116 DO iterm = 1, nterms(jatom)
117 idx = sum(nterms(1:jatom - 1)) + iterm
118 block_v_term(1:n, 1:n) => vec_v_terms(:,
idx)
119 CALL gth_calc_term(qs_env, block_v_term, iatom, jatom, iterm)
126 IF (pao%precondition) &
127 CALL pao_param_gth_preconditioner(pao, qs_env, nterms)
129 DEALLOCATE (row_blk_size, col_blk_size, nterms)
130 CALL timestop(handle)
141 IF (pao%precondition)
THEN
154 SUBROUTINE pao_param_gth_preconditioner(pao, qs_env, nterms)
157 INTEGER,
DIMENSION(:),
POINTER :: nterms
159 CHARACTER(len=*),
PARAMETER :: routinen =
'pao_param_gth_preconditioner'
161 INTEGER :: acol, arow, handle, i, iatom, ioffset, &
162 j, jatom, joffset, m, n, natoms
163 LOGICAL :: arnoldi_converged, converged, found
164 REAL(
dp) :: eval_max, eval_min
165 REAL(
dp),
DIMENSION(:, :),
POINTER :: block, block_overlap, block_v_term
171 CALL timeset(routinen, handle)
173 CALL get_qs_env(qs_env, ls_scf_env=ls_scf_env)
175 natoms =
SIZE(nterms)
178 template=pao%matrix_V_terms, &
180 row_blk_size=nterms, &
183 CALL dbcsr_set(matrix_gth_overlap, 0.0_dp)
187 ioffset = sum(nterms(1:iatom - 1))
188 joffset = sum(nterms(1:jatom - 1))
192 ALLOCATE (block(n, m))
199 cpassert(arow == acol)
202 block(i, j) = block(i, j) + sum(block_v_term(:, ioffset + i)*block_v_term(:, joffset + j))
208 CALL group%sum(block)
210 CALL dbcsr_get_block_p(matrix=matrix_gth_overlap, row=iatom, col=jatom, block=block_overlap, found=found)
211 IF (
ASSOCIATED(block_overlap)) &
212 block_overlap = block
219 CALL arnoldi_extremal(matrix_gth_overlap, eval_max, eval_min, max_iter=100, &
220 threshold=1e-2_dp, converged=arnoldi_converged)
221 IF (pao%iw > 0)
WRITE (pao%iw, *)
"PAO| GTH-preconditioner converged, min, max, max/min:", &
222 arnoldi_converged, eval_min, eval_max, eval_max/eval_min
224 CALL dbcsr_create(pao%matrix_precon, template=matrix_gth_overlap)
225 CALL dbcsr_create(pao%matrix_precon_inv, template=matrix_gth_overlap)
228 threshold=ls_scf_env%eps_filter, &
229 order=ls_scf_env%s_sqrt_order, &
230 max_iter_lanczos=ls_scf_env%max_iter_lanczos, &
231 eps_lanczos=ls_scf_env%eps_lanczos, &
235 IF (.NOT. converged) &
236 cpabort(
"PAO: Sqrt of GTH-preconditioner did not converge.")
238 CALL timestop(handle)
239 END SUBROUTINE pao_param_gth_preconditioner
253 LOGICAL,
INTENT(IN) :: gradient
254 REAL(
dp),
INTENT(INOUT),
OPTIONAL :: penalty
256 CHARACTER(len=*),
PARAMETER :: routinen =
'pao_calc_AB_gth'
262 CALL timeset(routinen, handle)
264 CALL dbcsr_create(matrix_u, matrix_type=
"N", dist=pao%diag_distribution, template=matrix_s(1)%matrix)
270 CALL pao_calc_u_gth(pao, matrix_u, matrix_m, pao%matrix_G, penalty)
273 CALL pao_calc_u_gth(pao, matrix_u, penalty=penalty)
278 CALL timestop(handle)
289 SUBROUTINE pao_calc_u_gth(pao, matrix_U, matrix_M1, matrix_G, penalty)
292 TYPE(
dbcsr_type),
OPTIONAL :: matrix_m1, matrix_g
293 REAL(
dp),
INTENT(INOUT),
OPTIONAL :: penalty
295 CHARACTER(len=*),
PARAMETER :: routinen =
'pao_calc_U_gth'
297 INTEGER :: acol, arow, handle, iatom,
idx, iterm, &
299 INTEGER,
DIMENSION(:),
POINTER :: nterms
301 REAL(
dp),
ALLOCATABLE,
DIMENSION(:) :: gaps
302 REAL(
dp),
DIMENSION(:),
POINTER :: world_g, world_x
303 REAL(
dp),
DIMENSION(:, :),
POINTER :: block_g, block_m1, block_m2, block_u, &
304 block_v, block_v_term, block_x, &
309 CALL timeset(routinen, handle)
311 CALL dbcsr_get_info(pao%matrix_X, row_blk_size=nterms, group=group)
312 natoms =
SIZE(nterms)
313 ALLOCATE (gaps(natoms))
317 ALLOCATE (world_x(sum(nterms)), world_g(sum(nterms)))
318 world_x = 0.0_dp; world_g = 0.0_dp
324 iatom = arow; cpassert(arow == acol)
325 idx = sum(nterms(1:iatom - 1))
326 world_x(
idx + 1:
idx + nterms(iatom)) = block_x(:, 1)
329 CALL group%sum(world_x)
335 iatom = arow; cpassert(arow == acol)
337 CALL dbcsr_get_block_p(matrix=pao%matrix_V_terms, row=iatom, col=iatom, block=vec_v_terms, found=found)
338 cpassert(
ASSOCIATED(vec_v_terms))
341 ALLOCATE (block_v(n, n))
343 DO iterm = 1,
SIZE(world_x)
344 block_v_term(1:n, 1:n) => vec_v_terms(:, iterm)
345 block_v = block_v + world_x(iterm)*block_v_term
349 IF (.NOT.
PRESENT(matrix_g))
THEN
353 cpassert(
PRESENT(matrix_m1))
354 CALL dbcsr_get_block_p(matrix=matrix_m1, row=iatom, col=iatom, block=block_m1, found=found)
355 ALLOCATE (block_m2(n, n))
357 m1=block_m1, g=block_m2, gap=gaps(iatom))
358 DO iterm = 1,
SIZE(world_g)
359 block_v_term(1:n, 1:n) => vec_v_terms(:, iterm)
360 world_g(iterm) = world_g(iterm) + sum(block_v_term*block_m2)
362 DEALLOCATE (block_m2)
369 IF (
PRESENT(matrix_g))
THEN
370 CALL group%sum(world_g)
374 iatom = arow; cpassert(arow == acol)
375 idx = sum(nterms(1:iatom - 1))
376 block_g(:, 1) = world_g(
idx + 1:
idx + nterms(iatom))
381 DEALLOCATE (world_x, world_g)
384 IF (
PRESENT(penalty)) &
385 CALL group%sum(penalty)
389 IF (pao%iw_gap > 0)
THEN
391 WRITE (pao%iw_gap, *)
"PAO| atom:", iatom,
" fock gap:", gaps(iatom)
398 WRITE (pao%iw,
"(A,E20.10,A,T71,I10)")
" PAO| min_gap:", minval(gaps),
" for atom:", minloc(gaps)
402 CALL timestop(handle)
404 END SUBROUTINE pao_calc_u_gth
414 INTEGER,
INTENT(IN) :: ikind
415 INTEGER,
INTENT(OUT) :: nparams
417 INTEGER :: max_projector, maxl, ncombis
419 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
421 CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
425 cpabort(
"GTH parametrization requires exactly one PAO_POTENTIAL section per KIND")
431 cpabort(
"GTH parametrization requires non-negative PAO_POTENTIAL%MAXL")
433 IF (max_projector < 0) &
434 cpabort(
"GTH parametrization requires non-negative PAO_POTENTIAL%MAX_PROJECTOR")
436 IF (mod(maxl, 2) /= 0) &
437 cpabort(
"GTH parametrization requires even-numbered PAO_POTENTIAL%MAXL")
439 ncombis = (max_projector + 1)*(max_projector + 2)/2
440 nparams = ncombis*(maxl/2 + 1)
452 SUBROUTINE gth_calc_term(qs_env, block_V, iatom, jatom, kterm)
454 REAL(
dp),
DIMENSION(:, :),
INTENT(OUT) :: block_v
455 INTEGER,
INTENT(IN) :: iatom, jatom, kterm
457 INTEGER :: c, ikind, jkind, lpot, max_l, min_l, &
458 pot_max_projector, pot_maxl
459 REAL(
dp),
DIMENSION(3) :: ra, rab, rb
460 REAL(kind=
dp) :: pot_beta
465 TYPE(
qs_kind_type),
DIMENSION(:),
POINTER :: qs_kind_set
469 particle_set=particle_set, &
470 qs_kind_set=qs_kind_set)
473 CALL get_atomic_kind(particle_set(jatom)%atomic_kind, kind_number=jkind)
481 outer:
DO lpot = 0, pot_maxl, 2
482 DO max_l = 0, pot_max_projector
485 IF (c == kterm)
EXIT outer
491 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
492 CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis_set)
494 ra = particle_set(iatom)%r
495 rb = particle_set(jatom)%r
496 rab =
pbc(ra, rb, cell)
500 min_l=min_l, max_l=max_l, beta=pot_beta, weight=1.0_dp)
502 END SUBROUTINE gth_calc_term
511 INTEGER :: acol, arow
512 REAL(
dp),
DIMENSION(:, :),
POINTER :: block_x
520 cpassert(arow == acol)
521 cpassert(
SIZE(block_x, 2) == 1)
525 block_x(1, 1) = 0.01_dp
static GRID_HOST_DEVICE int idx(const orbital a)
Return coset index of given orbital angular momentum.
arnoldi iteration using dbcsr
subroutine, public arnoldi_extremal(matrix_a, max_ev, min_ev, converged, threshold, max_iter)
simple wrapper to estimate extremal eigenvalues with arnoldi, using the old lanczos interface this hi...
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind(atomic_kind, fist_potential, element_symbol, name, mass, kind_number, natom, atom_list, rcov, rvdw, z, qeff, apol, cpol, mm_radius, shell, shell_active, damping)
Get attributes of an atomic kind.
Handles all functions related to the CELL.
subroutine, public dbcsr_iterator_next_block(iterator, row, column, block, block_number_argument_has_been_removed, row_size, col_size, row_offset, col_offset)
...
logical function, public dbcsr_iterator_blocks_left(iterator)
...
subroutine, public dbcsr_iterator_stop(iterator)
...
subroutine, public dbcsr_get_block_p(matrix, row, col, block, found, row_size, col_size)
...
subroutine, public dbcsr_get_info(matrix, nblkrows_total, nblkcols_total, nfullrows_total, nfullcols_total, nblkrows_local, nblkcols_local, nfullrows_local, nfullcols_local, my_prow, my_pcol, local_rows, local_cols, proc_row_dist, proc_col_dist, row_blk_size, col_blk_size, row_blk_offset, col_blk_offset, distribution, name, matrix_type, group)
...
subroutine, public dbcsr_iterator_start(iterator, matrix, shared, dynamic, dynamic_byrows)
...
subroutine, public dbcsr_set(matrix, alpha)
...
subroutine, public dbcsr_release(matrix)
...
subroutine, public dbcsr_reserve_all_blocks(matrix)
Reserves all blocks.
subroutine, public dbcsr_reserve_diag_blocks(matrix)
Reserves all diagonal blocks.
Types needed for a linear scaling quickstep SCF run based on the density matrix.
Routines useful for iterative matrix calculations.
subroutine, public matrix_sqrt_newton_schulz(matrix_sqrt, matrix_sqrt_inv, matrix, threshold, order, eps_lanczos, max_iter_lanczos, symmetrize, converged, iounit)
compute the sqrt of a matrix via the sign function and the corresponding Newton-Schulz iterations the...
Defines the basic variable types.
integer, parameter, public dp
Machine interface based on Fortran 2003 and POSIX.
subroutine, public m_flush(lunit)
flushes units if the &GLOBAL flag is set accordingly
Interface to the message passing library MPI.
Provides Cartesian and spherical orbital pointers and indices.
subroutine, public init_orbital_pointers(maxl)
Initialize or update the orbital pointers.
Common framework for using eigenvectors of a Fock matrix as PAO basis.
subroutine, public pao_calc_u_block_fock(pao, iatom, v, u, penalty, gap, evals, m1, g)
Calculate new matrix U and optinally its gradient G.
Parametrization based on GTH pseudo potentials.
subroutine, public pao_calc_ab_gth(pao, qs_env, ls_scf_env, gradient, penalty)
Takes current matrix_X and calculates the matrices A and B.
subroutine, public pao_param_initguess_gth(pao)
Calculate initial guess for matrix_X.
subroutine, public pao_param_count_gth(qs_env, ikind, nparams)
Returns the number of parameters for given atomic kind.
subroutine, public pao_param_init_gth(pao, qs_env)
Initialize the linear potential parametrization.
subroutine, public pao_param_finalize_gth(pao)
Finalize the GTH potential parametrization.
Common routines for PAO parametrizations.
subroutine, public pao_calc_grad_lnv_wrt_u(qs_env, ls_scf_env, matrix_m_diag)
Helper routine, calculates partial derivative dE/dU.
subroutine, public pao_calc_ab_from_u(pao, qs_env, ls_scf_env, matrix_u_diag)
Takes current matrix_X and calculates the matrices A and B.
Factory routines for potentials used e.g. by pao_param_exp and pao_ml.
subroutine, public pao_calc_gaussian(basis_set, block_v, block_d, rab, lpot, beta, weight, min_shell, max_shell, min_l, max_l)
Calculates potential term of the form r**lpot * Exp(-beta*r**2) One needs to call init_orbital_pointe...
Types used by the PAO machinery.
Define the data structure for the particle information.
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_pp, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, harris_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, eeq, rhs)
Get the QUICKSTEP environment.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zatom, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_model_file, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
Type defining parameters related to the simulation cell.
Holds information about a PAO potential.
Provides all information about a quickstep kind.