(git:ed6f26b)
Loading...
Searching...
No Matches
grpp_overlap.c
Go to the documentation of this file.
1/*----------------------------------------------------------------------------*/
2/* CP2K: A general program to perform molecular dynamics simulations */
3/* Copyright 2000-2025 CP2K developers group <https://cp2k.org> */
4/* */
5/* SPDX-License-Identifier: MIT */
6/*----------------------------------------------------------------------------*/
7
8/*
9 * libgrpp - a library for the evaluation of integrals over
10 * generalized relativistic pseudopotentials.
11 *
12 * Copyright (C) 2021-2023 Alexander Oleynichenko
13 */
14
15/**
16 * Calculation of overlap integrals.
17 *
18 * The recursive Obara-Saika scheme is used to calculate 1- and 2-center overlap
19 * integrals. For details, see: T. Helgaker, P. Jorgensen, J. Olsen, Molecular
20 * Electronic-Structure Theory, John Wiley & Sons Ltd, 2000. Chapter 9.3.1,
21 * "Overlap integrals"
22 */
23
24#include <math.h>
25#include <stdlib.h>
26#include <string.h>
27#ifndef M_PI
28#define M_PI 3.14159265358979323846
29#endif
30
31#include "grpp_norm_gaussian.h"
32#include "grpp_overlap.h"
33#include "libgrpp.h"
34
35#include "grpp_utils.h"
36
38 libgrpp_shell_t *shell_B,
39 double alpha_A,
40 double alpha_B,
41 double *overlap_matrix);
42
43/**
44 * Calculates overlap integral between two shells represented by contracted
45 * Gaussian functions.
46 */
48 libgrpp_shell_t *shell_B,
49 double *overlap_matrix) {
50 int size_A = libgrpp_get_shell_size(shell_A);
51 int size_B = libgrpp_get_shell_size(shell_B);
52
53 double *buf = calloc(size_A * size_B, sizeof(double));
54
55 memset(overlap_matrix, 0, size_A * size_B * sizeof(double));
56
57 // loop over primitives in contractions
58 for (int i = 0; i < shell_A->num_primitives; i++) {
59 for (int j = 0; j < shell_B->num_primitives; j++) {
60 double alpha_i = shell_A->alpha[i];
61 double alpha_j = shell_B->alpha[j];
62 double coef_A_i = shell_A->coeffs[i];
63 double coef_B_j = shell_B->coeffs[j];
64
65 overlap_integrals_shell_pair_obara_saika(shell_A, shell_B, alpha_i,
66 alpha_j, buf);
67
68 libgrpp_daxpy(size_A * size_B, coef_A_i * coef_B_j, buf, overlap_matrix);
69 }
70 }
71
72 free(buf);
73}
74
76 libgrpp_shell_t *shell_B,
77 double alpha_A,
78 double alpha_B,
79 double *overlap_matrix) {
80 int size_A = libgrpp_get_shell_size(shell_A);
81 int size_B = libgrpp_get_shell_size(shell_B);
82 int L_A = shell_A->L;
83 int L_B = shell_B->L;
84 double N_A = libgrpp_gaussian_norm_factor(L_A, 0, 0, alpha_A);
85 double N_B = libgrpp_gaussian_norm_factor(L_B, 0, 0, alpha_B);
86
87 double p = alpha_A + alpha_B;
88 double mu = alpha_A * alpha_B / (alpha_A + alpha_B);
89 double *A = shell_A->origin;
90 double *B = shell_B->origin;
91
93
94 for (int coord = 0; coord < 3; coord++) {
95 double P = (alpha_A * A[coord] + alpha_B * B[coord]) / p;
96
97 double X_AB = A[coord] - B[coord];
98 double X_PA = P - A[coord];
99 double X_PB = P - B[coord];
100 double pfac = 1.0 / (2.0 * p);
101
102 for (int i = 0; i <= L_A; i++) {
103 for (int j = 0; j <= L_B; j++) {
104 double S_ij = 0.0;
105
106 if (i + j == 0) {
107 S[coord][0][0] = sqrt(M_PI / p) * exp(-mu * X_AB * X_AB);
108 continue;
109 }
110
111 if (i == 0) { // upward by j
112 S_ij += X_PB * S[coord][i][j - 1];
113 if (j - 1 > 0) {
114 S_ij += (j - 1) * pfac * S[coord][i][j - 2];
115 }
116 } else { // upward by i
117 S_ij += X_PA * S[coord][i - 1][j];
118 if (i - 1 > 0) {
119 S_ij += (i - 1) * pfac * S[coord][i - 2][j];
120 }
121 if (j > 0) {
122 S_ij += j * pfac * S[coord][i - 1][j - 1];
123 }
124 }
125
126 S[coord][i][j] = S_ij;
127 }
128 }
129 }
130
131 // loop over cartesian functions inside the shells
132 for (int m = 0; m < size_A; m++) {
133 for (int n = 0; n < size_B; n++) {
134 int n_A = shell_A->cart_list[3 * m + 0];
135 int l_A = shell_A->cart_list[3 * m + 1];
136 int m_A = shell_A->cart_list[3 * m + 2];
137 int n_B = shell_B->cart_list[3 * n + 0];
138 int l_B = shell_B->cart_list[3 * n + 1];
139 int m_B = shell_B->cart_list[3 * n + 2];
140
141 overlap_matrix[m * size_B + n] =
142 N_A * N_B * S[0][n_A][n_B] * S[1][l_A][l_B] * S[2][m_A][m_B];
143 }
144 }
145}
static void const int const int i
double libgrpp_gaussian_norm_factor(int n, int l, int m, double alpha)
static void overlap_integrals_shell_pair_obara_saika(libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B, double alpha_A, double alpha_B, double *overlap_matrix)
void libgrpp_overlap_integrals(libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B, double *overlap_matrix)
#define M_PI
int libgrpp_get_shell_size(libgrpp_shell_t *shell)
Definition grpp_shell.c:98
void libgrpp_daxpy(int n, double a, double *x, double *y)
Definition grpp_utils.c:46
#define LIBGRPP_MAX_BASIS_L