(git:374b731)
Loading...
Searching...
No Matches
qs_rho0_ggrid.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7! **************************************************************************************************
13 USE cell_types, ONLY: cell_type,&
14 pbc
17 USE grid_api, ONLY: grid_func_ab,&
19 USE kinds, ONLY: dp
22 USE orbital_pointers, ONLY: indco,&
23 nco,&
24 ncoset,&
25 nso,&
26 nsoset
29 USE pw_env_types, ONLY: pw_env_get,&
31 USE pw_methods, ONLY: pw_axpy,&
32 pw_copy,&
34 pw_scale,&
37 USE pw_pool_types, ONLY: pw_pool_p_type,&
39 USE pw_types, ONLY: pw_c1d_gs_type,&
47 USE qs_kind_types, ONLY: get_qs_kind,&
51 USE qs_rho0_types, ONLY: get_rho0_mpole,&
64 USE util, ONLY: get_limit
65 USE virial_types, ONLY: virial_type
66#include "./base/base_uses.f90"
67
68 IMPLICIT NONE
69
70 PRIVATE
71
72 ! Global parameters (only in this module)
73
74 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_rho0_ggrid'
75
76 ! Public subroutines
77
79
80CONTAINS
81
82! **************************************************************************************************
83!> \brief ...
84!> \param qs_env ...
85!> \param rho0 ...
86!> \param tot_rs_int ...
87! **************************************************************************************************
88 SUBROUTINE put_rho0_on_grid(qs_env, rho0, tot_rs_int)
89
90 TYPE(qs_environment_type), POINTER :: qs_env
91 TYPE(rho0_mpole_type), POINTER :: rho0
92 REAL(kind=dp), INTENT(OUT) :: tot_rs_int
93
94 CHARACTER(LEN=*), PARAMETER :: routinen = 'put_rho0_on_grid'
95
96 INTEGER :: auxbas_grid, handle, iat, iatom, igrid, &
97 ikind, ithread, j, l0_ikind, lmax0, &
98 nat, nch_ik, nch_max, npme
99 INTEGER, DIMENSION(:), POINTER :: atom_list, cores
100 LOGICAL :: paw_atom
101 REAL(kind=dp) :: eps_rho_rspace, rpgf0, zet0
102 REAL(kind=dp), DIMENSION(3) :: ra
103 REAL(kind=dp), DIMENSION(:), POINTER :: qlm_c
104 REAL(kind=dp), DIMENSION(:, :), POINTER :: pab
105 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
106 TYPE(cell_type), POINTER :: cell
107 TYPE(dft_control_type), POINTER :: dft_control
108 TYPE(mp_para_env_type), POINTER :: para_env
109 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
110 TYPE(pw_c1d_gs_type) :: coeff_gspace
111 TYPE(pw_c1d_gs_type), POINTER :: rho0_s_gs
112 TYPE(pw_env_type), POINTER :: pw_env
113 TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
114 TYPE(pw_pool_type), POINTER :: pw_pool
115 TYPE(pw_r3d_rs_type) :: coeff_rspace, rho0_r_tmp
116 TYPE(pw_r3d_rs_type), POINTER :: rho0_s_rs
117 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
118 TYPE(realspace_grid_desc_p_type), DIMENSION(:), &
119 POINTER :: descs
120 TYPE(realspace_grid_desc_type), POINTER :: desc
121 TYPE(realspace_grid_type), DIMENSION(:), POINTER :: grids
122 TYPE(realspace_grid_type), POINTER :: rs_grid
123
124 CALL timeset(routinen, handle)
125
126 NULLIFY (atomic_kind_set, qs_kind_set, cores, pab, qlm_c)
127
128 NULLIFY (dft_control, pw_env, particle_set, para_env, cell, rho0_s_gs, rho0_s_rs)
129 CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, &
130 particle_set=particle_set, &
131 atomic_kind_set=atomic_kind_set, &
132 qs_kind_set=qs_kind_set, &
133 para_env=para_env, &
134 pw_env=pw_env, cell=cell)
135 eps_rho_rspace = dft_control%qs_control%eps_rho_rspace
136
137 NULLIFY (descs, pw_pools)
138 CALL pw_env_get(pw_env=pw_env, rs_descs=descs, rs_grids=grids, pw_pools=pw_pools)
139 auxbas_grid = pw_env%auxbas_grid
140
141 NULLIFY (rho0_s_gs, rho0_s_rs)
142 CALL get_rho0_mpole(rho0_mpole=rho0, lmax_0=lmax0, &
143 zet0_h=zet0, igrid_zet0_s=igrid, &
144 rho0_s_gs=rho0_s_gs, &
145 rho0_s_rs=rho0_s_rs)
146
147 ! *** set up the rs grid at level igrid
148 NULLIFY (rs_grid, desc, pw_pool)
149 desc => descs(igrid)%rs_desc
150 rs_grid => grids(igrid)
151 pw_pool => pw_pools(igrid)%pool
152
153 cpassert(ASSOCIATED(desc))
154 cpassert(ASSOCIATED(pw_pool))
155
156 IF (igrid /= auxbas_grid) THEN
157 CALL pw_pool%create_pw(coeff_rspace)
158 CALL pw_pool%create_pw(coeff_gspace)
159 END IF
160 CALL rs_grid_zero(rs_grid)
161
162 nch_max = ncoset(lmax0)
163
164 ALLOCATE (pab(nch_max, 1))
165
166 DO ikind = 1, SIZE(atomic_kind_set)
167 CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom_list, natom=nat)
168 CALL get_qs_kind(qs_kind_set(ikind), paw_atom=paw_atom)
169
170 IF (.NOT. paw_atom .AND. dft_control%qs_control%gapw_control%nopaw_as_gpw) cycle
171
172 CALL get_rho0_mpole(rho0_mpole=rho0, ikind=ikind, l0_ikind=l0_ikind, &
173 rpgf0_s=rpgf0)
174
175 nch_ik = ncoset(l0_ikind)
176 pab = 0.0_dp
177
178 CALL reallocate(cores, 1, nat)
179 npme = 0
180 cores = 0
181
182 DO iat = 1, nat
183 iatom = atom_list(iat)
184 ra(:) = pbc(particle_set(iatom)%r, cell)
185 IF (rs_grid%desc%parallel .AND. .NOT. rs_grid%desc%distributed) THEN
186 ! replicated realspace grid, split the atoms up between procs
187 IF (modulo(nat, rs_grid%desc%group_size) == rs_grid%desc%my_pos) THEN
188 npme = npme + 1
189 cores(npme) = iat
190 END IF
191 ELSE
192 npme = npme + 1
193 cores(npme) = iat
194 END IF
195
196 END DO
197
198 ithread = 0
199 DO j = 1, npme
200
201 iat = cores(j)
202 iatom = atom_list(iat)
203
204 CALL get_rho0_mpole(rho0_mpole=rho0, iat=iatom, qlm_car=qlm_c)
205
206 pab(1:nch_ik, 1) = qlm_c(1:nch_ik)
207
208 ra(:) = pbc(particle_set(iatom)%r, cell)
209
211 l0_ikind, zet0, 0, 0, 0.0_dp, 0, &
212 ra, (/0.0_dp, 0.0_dp, 0.0_dp/), 1.0_dp, pab, 0, 0, &
213 rs_grid, ga_gb_function=grid_func_ab, radius=rpgf0, &
214 use_subpatch=.true., subpatch_pattern=0)
215
216 END DO ! j
217
218 END DO ! ikind
219
220 IF (ASSOCIATED(cores)) THEN
221 DEALLOCATE (cores)
222 END IF
223
224 DEALLOCATE (pab)
225
226 IF (igrid /= auxbas_grid) THEN
227 CALL transfer_rs2pw(rs_grid, coeff_rspace)
228 CALL pw_zero(rho0_s_gs)
229 CALL pw_transfer(coeff_rspace, coeff_gspace)
230 CALL pw_axpy(coeff_gspace, rho0_s_gs)
231
232 tot_rs_int = pw_integrate_function(coeff_rspace, isign=-1)
233
234 CALL pw_pool%give_back_pw(coeff_rspace)
235 CALL pw_pool%give_back_pw(coeff_gspace)
236 ELSE
237
238 CALL pw_pool%create_pw(rho0_r_tmp)
239
240 CALL transfer_rs2pw(rs_grid, rho0_r_tmp)
241
242 tot_rs_int = pw_integrate_function(rho0_r_tmp, isign=-1)
243
244 CALL pw_transfer(rho0_r_tmp, rho0_s_rs)
245 CALL pw_pool%give_back_pw(rho0_r_tmp)
246
247 CALL pw_zero(rho0_s_gs)
248 CALL pw_transfer(rho0_s_rs, rho0_s_gs)
249 END IF
250 CALL timestop(handle)
251
252 END SUBROUTINE put_rho0_on_grid
253
254! **************************************************************************************************
255!> \brief ...
256!> \param pw_env ...
257!> \param rho0_mpole ...
258! **************************************************************************************************
259 SUBROUTINE rho0_s_grid_create(pw_env, rho0_mpole)
260
261 TYPE(pw_env_type), POINTER :: pw_env
262 TYPE(rho0_mpole_type), POINTER :: rho0_mpole
263
264 CHARACTER(len=*), PARAMETER :: routinen = 'rho0_s_grid_create'
265
266 INTEGER :: handle
267 TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
268
269 CALL timeset(routinen, handle)
270
271 cpassert(ASSOCIATED(pw_env))
272
273 NULLIFY (auxbas_pw_pool)
274 CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
275 cpassert(ASSOCIATED(auxbas_pw_pool))
276
277 ! reallocate rho0 on the global grid in real and reciprocal space
278 cpassert(ASSOCIATED(rho0_mpole))
279
280 ! rho0 density in real space
281 IF (ASSOCIATED(rho0_mpole%rho0_s_rs)) THEN
282 CALL rho0_mpole%rho0_s_rs%release()
283 ELSE
284 ALLOCATE (rho0_mpole%rho0_s_rs)
285 END IF
286 CALL auxbas_pw_pool%create_pw(rho0_mpole%rho0_s_rs)
287
288 ! rho0 density in reciprocal space
289 IF (ASSOCIATED(rho0_mpole%rho0_s_gs)) THEN
290 CALL rho0_mpole%rho0_s_gs%release()
291 ELSE
292 ALLOCATE (rho0_mpole%rho0_s_gs)
293 END IF
294 CALL auxbas_pw_pool%create_pw(rho0_mpole%rho0_s_gs)
295
296 ! Find the grid level suitable for rho0_soft
297 rho0_mpole%igrid_zet0_s = gaussian_gridlevel(pw_env%gridlevel_info, 2.0_dp*rho0_mpole%zet0_h)
298
299 CALL timestop(handle)
300
301 END SUBROUTINE rho0_s_grid_create
302
303! **************************************************************************************************
304!> \brief ...
305!> \param qs_env ...
306!> \param v_rspace ...
307!> \param para_env ...
308!> \param calculate_forces ...
309!> \param local_rho_set ...
310!> \param local_rho_set_2nd ...
311!> \param atener ...
312!> \param kforce ...
313! **************************************************************************************************
314 SUBROUTINE integrate_vhg0_rspace(qs_env, v_rspace, para_env, calculate_forces, local_rho_set, &
315 local_rho_set_2nd, atener, kforce)
316
317 TYPE(qs_environment_type), POINTER :: qs_env
318 TYPE(pw_r3d_rs_type), INTENT(IN) :: v_rspace
319 TYPE(mp_para_env_type), POINTER :: para_env
320 LOGICAL, INTENT(IN) :: calculate_forces
321 TYPE(local_rho_type), OPTIONAL, POINTER :: local_rho_set, local_rho_set_2nd
322 REAL(kind=dp), DIMENSION(:), OPTIONAL :: atener
323 REAL(kind=dp), INTENT(IN), OPTIONAL :: kforce
324
325 CHARACTER(LEN=*), PARAMETER :: routinen = 'integrate_vhg0_rspace'
326
327 INTEGER :: auxbas_grid, bo(2), handle, i, iat, iatom, ic, icg, ico, ig1, ig2, igrid, ii, &
328 ikind, ipgf1, ipgf2, is, iset1, iset2, iso, iso1, iso2, ispin, j, l0_ikind, llmax, lmax0, &
329 lshell, lx, ly, lz, m1, m2, max_iso_not0_local, max_s_harm, maxl, maxso, mepos, n1, n2, &
330 nat, nch_ik, nch_max, ncurr, nset, nsotot, nspins, num_pe
331 INTEGER, ALLOCATABLE, DIMENSION(:) :: cg_n_list
332 INTEGER, ALLOCATABLE, DIMENSION(:, :, :) :: cg_list
333 INTEGER, DIMENSION(:), POINTER :: atom_list, lmax, lmin, npgf
334 LOGICAL :: grid_distributed, paw_atom, use_virial
335 REAL(kind=dp) :: eps_rho_rspace, force_tmp(3), fscale, &
336 ra(3), rpgf0, zet0
337 REAL(kind=dp), DIMENSION(3, 3) :: my_virial_a, my_virial_b
338 REAL(kind=dp), DIMENSION(:), POINTER :: hab_sph, norm_l, qlm
339 REAL(kind=dp), DIMENSION(:, :), POINTER :: hab, hdab_sph, intloc, pab
340 REAL(kind=dp), DIMENSION(:, :, :), POINTER :: a_hdab_sph, hdab, qlm_gg
341 REAL(kind=dp), DIMENSION(:, :, :, :), POINTER :: a_hdab
342 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
343 TYPE(cell_type), POINTER :: cell
344 TYPE(dft_control_type), POINTER :: dft_control
345 TYPE(gto_basis_set_type), POINTER :: basis_1c_set
346 TYPE(harmonics_atom_type), POINTER :: harmonics
347 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
348 TYPE(pw_c1d_gs_type) :: coeff_gaux, coeff_gspace
349 TYPE(pw_env_type), POINTER :: pw_env
350 TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
351 TYPE(pw_pool_type), POINTER :: pw_aux, pw_pool
352 TYPE(pw_r3d_rs_type) :: coeff_raux, coeff_rspace
353 TYPE(qs_force_type), DIMENSION(:), POINTER :: force
354 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
355 TYPE(realspace_grid_desc_p_type), DIMENSION(:), &
356 POINTER :: rs_descs
357 TYPE(realspace_grid_desc_type), POINTER :: rs_desc
358 TYPE(realspace_grid_type) :: rs_v
359 TYPE(rho0_mpole_type), POINTER :: rho0_mpole
360 TYPE(rho_atom_coeff), DIMENSION(:), POINTER :: int_local_h, int_local_s
361 TYPE(rho_atom_type), DIMENSION(:), POINTER :: rho_atom_set
362 TYPE(rho_atom_type), POINTER :: rho_atom
363 TYPE(virial_type), POINTER :: virial
364
365 CALL timeset(routinen, handle)
366
367 ! In case of the external density computed forces probably also
368 ! need to be stored outside qs_env. We can then remove the
369 ! attribute 'OPTIONAL' from the argument 'local_rho_set'.
370
371 ! CPASSERT(.NOT. (calculate_forces .AND. PRESENT(local_rho_set)))
372! IF (calculate_forces .AND. PRESENT(local_rho_set)) THEN
373! CPWARN("Forces and External Density!")
374! END IF
375
376 NULLIFY (atomic_kind_set, qs_kind_set, dft_control, particle_set)
377 NULLIFY (cell, force, pw_env, rho0_mpole, rho_atom_set)
378
379 CALL get_qs_env(qs_env=qs_env, &
380 atomic_kind_set=atomic_kind_set, &
381 qs_kind_set=qs_kind_set, &
382 cell=cell, &
383 dft_control=dft_control, &
384 force=force, pw_env=pw_env, &
385 rho0_mpole=rho0_mpole, &
386 rho_atom_set=rho_atom_set, &
387 particle_set=particle_set, &
388 virial=virial)
389
390 use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
391
392 nspins = dft_control%nspins
393
394 ! The aim of the following code was to return immediately if the subroutine
395 ! was called for triplet excited states in spin-restricted case. This check
396 ! is also performed before invocation of this subroutine. It should be save
397 ! to remove the optional argument 'do_triplet' from the subroutine interface.
398 !my_tddft = PRESENT(local_rho_set)
399 !IF (my_tddft) THEN
400 ! IF (PRESENT(do_triplet)) THEN
401 ! IF (nspins == 1 .AND. do_triplet) RETURN
402 ! ELSE
403 ! IF (nspins == 1 .AND. dft_control%tddfpt_control%res_etype /= tddfpt_singlet) RETURN
404 ! END IF
405 !END IF
406
407 IF (PRESENT(local_rho_set)) &
408 CALL get_local_rho(local_rho_set, rho0_mpole=rho0_mpole, rho_atom_set=rho_atom_set)
409 ! Q from rho0_mpole of local_rho_set
410 ! for TDDFT forces we need mixed potential / integral space
411 ! potential stored on local_rho_set_2nd
412 IF (PRESENT(local_rho_set_2nd)) THEN
413 CALL get_local_rho(local_rho_set_2nd, rho_atom_set=rho_atom_set)
414 END IF
415 CALL get_rho0_mpole(rho0_mpole=rho0_mpole, lmax_0=lmax0, &
416 zet0_h=zet0, igrid_zet0_s=igrid, &
417 norm_g0l_h=norm_l)
418
419 ! Setup of the potential on the multigrids
420 NULLIFY (rs_descs, pw_pools)
421 cpassert(ASSOCIATED(pw_env))
422 CALL pw_env_get(pw_env, rs_descs=rs_descs, pw_pools=pw_pools)
423
424 ! Assign from pw_env
425 auxbas_grid = pw_env%auxbas_grid
426
427 ! Get the potential on the right grid
428 NULLIFY (rs_desc, pw_pool, pw_aux)
429 rs_desc => rs_descs(igrid)%rs_desc
430 pw_pool => pw_pools(igrid)%pool
431
432 CALL pw_pool%create_pw(coeff_gspace)
433 CALL pw_pool%create_pw(coeff_rspace)
434
435 IF (igrid /= auxbas_grid) THEN
436 pw_aux => pw_pools(auxbas_grid)%pool
437 CALL pw_aux%create_pw(coeff_gaux)
438 CALL pw_transfer(v_rspace, coeff_gaux)
439 CALL pw_copy(coeff_gaux, coeff_gspace)
440 CALL pw_transfer(coeff_gspace, coeff_rspace)
441 CALL pw_aux%give_back_pw(coeff_gaux)
442 CALL pw_aux%create_pw(coeff_raux)
443 fscale = coeff_rspace%pw_grid%dvol/coeff_raux%pw_grid%dvol
444 CALL pw_scale(coeff_rspace, fscale)
445 CALL pw_aux%give_back_pw(coeff_raux)
446 ELSE
447
448 IF (coeff_gspace%pw_grid%spherical) THEN
449 CALL pw_transfer(v_rspace, coeff_gspace)
450 CALL pw_transfer(coeff_gspace, coeff_rspace)
451 ELSE
452 CALL pw_copy(v_rspace, coeff_rspace)
453 END IF
454 END IF
455 CALL pw_pool%give_back_pw(coeff_gspace)
456
457 ! Setup the rs grid at level igrid
458 CALL rs_grid_create(rs_v, rs_desc)
459 CALL rs_grid_zero(rs_v)
460 CALL transfer_pw2rs(rs_v, coeff_rspace)
461
462 CALL pw_pool%give_back_pw(coeff_rspace)
463
464 ! Now the potential is on the right grid => integration
465
466 eps_rho_rspace = dft_control%qs_control%eps_rho_rspace
467
468 ! Allocate work storage
469
470 NULLIFY (hab, hab_sph, hdab, hdab_sph, pab, a_hdab, a_hdab_sph)
471 nch_max = ncoset(lmax0)
472 CALL reallocate(hab, 1, nch_max, 1, 1)
473 CALL reallocate(hab_sph, 1, nch_max)
474 CALL reallocate(hdab, 1, 3, 1, nch_max, 1, 1)
475 CALL reallocate(hdab_sph, 1, 3, 1, nch_max)
476 CALL reallocate(a_hdab, 1, 3, 1, 3, 1, nch_max, 1, 1)
477 CALL reallocate(a_hdab_sph, 1, 3, 1, 3, 1, nch_max)
478 CALL reallocate(pab, 1, nch_max, 1, 1)
479
480 ncurr = -1
481
482 grid_distributed = rs_v%desc%distributed
483
484 fscale = 1.0_dp
485 IF (PRESENT(kforce)) THEN
486 fscale = kforce
487 END IF
488
489 DO ikind = 1, SIZE(atomic_kind_set, 1)
490 NULLIFY (basis_1c_set, atom_list, harmonics)
491 CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom_list, natom=nat)
492 CALL get_qs_kind(qs_kind_set(ikind), &
493 basis_set=basis_1c_set, basis_type="GAPW_1C", &
494 paw_atom=paw_atom, &
495 harmonics=harmonics)
496
497 IF (.NOT. paw_atom) cycle
498
499 NULLIFY (qlm_gg, lmax, npgf)
500 CALL get_rho0_mpole(rho0_mpole=rho0_mpole, ikind=ikind, &
501 l0_ikind=l0_ikind, qlm_gg=qlm_gg, & ! Qs different
502 rpgf0_s=rpgf0)
503
504 CALL get_gto_basis_set(gto_basis_set=basis_1c_set, &
505 lmax=lmax, lmin=lmin, &
506 maxso=maxso, maxl=maxl, &
507 nset=nset, npgf=npgf)
508
509 nsotot = maxso*nset
510 ALLOCATE (intloc(nsotot, nsotot))
511
512 ! Initialize the local KS integrals
513
514 nch_ik = ncoset(l0_ikind)
515 pab = 1.0_dp
516 max_s_harm = harmonics%max_s_harm
517 llmax = harmonics%llmax
518
519 ALLOCATE (cg_list(2, nsoset(maxl)**2, max_s_harm), cg_n_list(max_s_harm))
520
521 num_pe = para_env%num_pe
522 mepos = para_env%mepos
523 DO j = 0, num_pe - 1
524 bo = get_limit(nat, num_pe, j)
525 IF (.NOT. grid_distributed .AND. j /= mepos) cycle
526
527 DO iat = bo(1), bo(2)
528 iatom = atom_list(iat)
529 ra(:) = pbc(particle_set(iatom)%r, cell)
530
531 NULLIFY (qlm)
532 CALL get_rho0_mpole(rho0_mpole=rho0_mpole, iat=iatom, qlm_tot=qlm)
533
534 hab = 0.0_dp
535 hdab = 0.0_dp
536 intloc = 0._dp
537 IF (use_virial) THEN
538 my_virial_a = 0.0_dp
539 my_virial_b = 0.0_dp
540 a_hdab = 0.0_dp
541 END IF
542
544 l0_ikind, zet0, 0, 0, 0.0_dp, 0, &
545 ra, (/0.0_dp, 0.0_dp, 0.0_dp/), rs_v, &
546 hab, pab, o1=0, o2=0, &
547 radius=rpgf0, &
548 calculate_forces=calculate_forces, &
549 use_virial=use_virial, my_virial_a=my_virial_a, my_virial_b=my_virial_b, &
550 hdab=hdab, a_hdab=a_hdab, use_subpatch=.true., subpatch_pattern=0)
551
552 ! Convert from cartesian to spherical
553 DO lshell = 0, l0_ikind
554 DO is = 1, nso(lshell)
555 iso = is + nsoset(lshell - 1)
556 hab_sph(iso) = 0.0_dp
557 hdab_sph(1:3, iso) = 0.0_dp
558 a_hdab_sph(1:3, 1:3, iso) = 0.0_dp
559 DO ic = 1, nco(lshell)
560 ico = ic + ncoset(lshell - 1)
561 lx = indco(1, ico)
562 ly = indco(2, ico)
563 lz = indco(3, ico)
564 hab_sph(iso) = hab_sph(iso) + &
565 norm_l(lshell)* &
566 orbtramat(lshell)%slm(is, ic)* &
567 hab(ico, 1)
568 IF (calculate_forces) THEN
569 hdab_sph(1:3, iso) = hdab_sph(1:3, iso) + &
570 norm_l(lshell)* &
571 orbtramat(lshell)%slm(is, ic)* &
572 hdab(1:3, ico, 1)
573 END IF
574 IF (use_virial) THEN
575 DO ii = 1, 3
576 DO i = 1, 3
577 a_hdab_sph(i, ii, iso) = a_hdab_sph(i, ii, iso) + &
578 norm_l(lshell)* &
579 orbtramat(lshell)%slm(is, ic)* &
580 a_hdab(i, ii, ico, 1)
581 END DO
582 END DO
583 END IF
584
585 END DO ! ic
586 END DO ! is
587 END DO ! lshell
588
589 m1 = 0
590 DO iset1 = 1, nset
591
592 m2 = 0
593 DO iset2 = 1, nset
594 CALL get_none0_cg_list(harmonics%my_CG, lmin(iset1), lmax(iset1), lmin(iset2), lmax(iset2), &
595 max_s_harm, llmax, cg_list, cg_n_list, max_iso_not0_local)
596 n1 = nsoset(lmax(iset1))
597 DO ipgf1 = 1, npgf(iset1)
598 n2 = nsoset(lmax(iset2))
599 DO ipgf2 = 1, npgf(iset2)
600
601 DO iso = 1, min(nsoset(l0_ikind), max_iso_not0_local)
602 DO icg = 1, cg_n_list(iso)
603 iso1 = cg_list(1, icg, iso)
604 iso2 = cg_list(2, icg, iso)
605
606 ig1 = iso1 + n1*(ipgf1 - 1) + m1
607 ig2 = iso2 + n2*(ipgf2 - 1) + m2
608
609 intloc(ig1, ig2) = intloc(ig1, ig2) + qlm_gg(ig1, ig2, iso)*hab_sph(iso) ! potential times Q
610
611 END DO ! icg
612 END DO ! iso
613
614 END DO ! ipgf2
615 END DO ! ipgf1
616 m2 = m2 + maxso
617 END DO ! iset2
618 m1 = m1 + maxso
619 END DO ! iset1
620
621 IF (grid_distributed) THEN
622 ! Sum result over all processors
623 CALL para_env%sum(intloc)
624 END IF
625
626 IF (j == mepos) THEN
627 rho_atom => rho_atom_set(iatom)
628 CALL get_rho_atom(rho_atom=rho_atom, ga_vlocal_gb_h=int_local_h, ga_vlocal_gb_s=int_local_s)
629 DO ispin = 1, nspins
630 int_local_h(ispin)%r_coef = int_local_h(ispin)%r_coef + intloc
631 int_local_s(ispin)%r_coef = int_local_s(ispin)%r_coef + intloc
632 END DO
633 END IF
634
635 IF (PRESENT(atener)) THEN
636 DO iso = 1, nsoset(l0_ikind)
637 atener(iatom) = atener(iatom) + 0.5_dp*qlm(iso)*hab_sph(iso)
638 END DO
639 END IF
640
641 IF (calculate_forces) THEN
642 force_tmp(1:3) = 0.0_dp
643 DO iso = 1, nsoset(l0_ikind)
644 force_tmp(1) = force_tmp(1) + qlm(iso)*hdab_sph(1, iso) ! Q here is from local_rho_set
645 force_tmp(2) = force_tmp(2) + qlm(iso)*hdab_sph(2, iso)
646 force_tmp(3) = force_tmp(3) + qlm(iso)*hdab_sph(3, iso)
647 END DO
648 force(ikind)%g0s_Vh_elec(1:3, iat) = force(ikind)%g0s_Vh_elec(1:3, iat) + fscale*force_tmp(1:3)
649 END IF
650 IF (use_virial) THEN
651 my_virial_a = 0.0_dp
652 DO iso = 1, nsoset(l0_ikind)
653 DO ii = 1, 3
654 DO i = 1, 3
655 ! Q from local_rho_set
656 virial%pv_gapw(i, ii) = virial%pv_gapw(i, ii) + fscale*qlm(iso)*a_hdab_sph(i, ii, iso)
657 virial%pv_virial(i, ii) = virial%pv_virial(i, ii) + fscale*qlm(iso)*a_hdab_sph(i, ii, iso)
658 END DO
659 END DO
660 END DO
661 END IF
662
663 END DO
664 END DO
665
666 DEALLOCATE (intloc)
667 DEALLOCATE (cg_list, cg_n_list)
668
669 END DO ! ikind
670
671 CALL rs_grid_release(rs_v)
672
673 DEALLOCATE (hab, hdab, hab_sph, hdab_sph, pab, a_hdab, a_hdab_sph)
674
675 CALL timestop(handle)
676
677 END SUBROUTINE integrate_vhg0_rspace
678
679END MODULE qs_rho0_ggrid
static GRID_HOST_DEVICE int modulo(int a, int m)
Equivalent of Fortran's MODULO, which always return a positive number. https://gcc....
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind(atomic_kind, fist_potential, element_symbol, name, mass, kind_number, natom, atom_list, rcov, rvdw, z, qeff, apol, cpol, mm_radius, shell, shell_active, damping)
Get attributes of an atomic kind.
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius)
...
Handles all functions related to the CELL.
Definition cell_types.F:15
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
integer function, public gaussian_gridlevel(gridlevel_info, exponent)
...
Fortran API for the grid package, which is written in C.
Definition grid_api.F:12
integer, parameter, public grid_func_ab
Definition grid_api.F:29
subroutine, public integrate_pgf_product(la_max, zeta, la_min, lb_max, zetb, lb_min, ra, rab, rsgrid, hab, pab, o1, o2, radius, calculate_forces, force_a, force_b, compute_tau, use_virial, my_virial_a, my_virial_b, hdab, hadb, a_hdab, use_subpatch, subpatch_pattern)
low level function to compute matrix elements of primitive gaussian functions
Definition grid_api.F:279
subroutine, public collocate_pgf_product(la_max, zeta, la_min, lb_max, zetb, lb_min, ra, rab, scale, pab, o1, o2, rsgrid, ga_gb_function, radius, use_subpatch, subpatch_pattern)
low level collocation of primitive gaussian functions
Definition grid_api.F:119
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
Utility routines for the memory handling.
Interface to the message passing library MPI.
Provides Cartesian and spherical orbital pointers and indices.
integer, dimension(:), allocatable, public nco
integer, dimension(:), allocatable, public nsoset
integer, dimension(:), allocatable, public ncoset
integer, dimension(:, :), allocatable, public indco
integer, dimension(:), allocatable, public nso
Calculation of the spherical harmonics and the corresponding orbital transformation matrices.
type(orbtramat_type), dimension(:), pointer, public orbtramat
Define the data structure for the particle information.
container for various plainwaves related things
subroutine, public pw_env_get(pw_env, pw_pools, cube_info, gridlevel_info, auxbas_pw_pool, auxbas_grid, auxbas_rs_desc, auxbas_rs_grid, rs_descs, rs_grids, xc_pw_pool, vdw_pw_pool, poisson_env, interp_section)
returns the various attributes of the pw env
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, rhs)
Get the QUICKSTEP environment.
Integrate single or product functions over a potential on a RS grid.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_r3d_rs_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public get_local_rho(local_rho_set, rho_atom_set, rho0_atom_set, rho0_mpole, rhoz_set)
...
subroutine, public integrate_vhg0_rspace(qs_env, v_rspace, para_env, calculate_forces, local_rho_set, local_rho_set_2nd, atener, kforce)
...
subroutine, public put_rho0_on_grid(qs_env, rho0, tot_rs_int)
...
subroutine, public rho0_s_grid_create(pw_env, rho0_mpole)
...
subroutine, public get_rho0_mpole(rho0_mpole, g0_h, vg0_h, iat, ikind, lmax_0, l0_ikind, mp_gau_ikind, mp_rho, norm_g0l_h, qlm_gg, qlm_car, qlm_tot, zet0_h, igrid_zet0_s, rpgf0_h, rpgf0_s, max_rpgf0_s, rho0_s_rs, rho0_s_gs)
...
subroutine, public get_rho_atom(rho_atom, cpc_h, cpc_s, rho_rad_h, rho_rad_s, drho_rad_h, drho_rad_s, vrho_rad_h, vrho_rad_s, rho_rad_h_d, rho_rad_s_d, ga_vlocal_gb_h, ga_vlocal_gb_s, int_scr_h, int_scr_s)
...
subroutine, public rs_grid_create(rs, desc)
...
subroutine, public transfer_pw2rs(rs, pw)
...
subroutine, public transfer_rs2pw(rs, pw)
...
subroutine, public rs_grid_release(rs_grid)
releases the given rs grid (see doc/ReferenceCounting.html)
subroutine, public rs_grid_zero(rs)
Initialize grid to zero.
All kind of helpful little routines.
Definition util.F:14
pure integer function, dimension(2), public get_limit(m, n, me)
divide m entries into n parts, return size of part me
Definition util.F:333
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
Definition cell_types.F:55
stores all the informations relevant to an mpi environment
contained for different pw related things
to create arrays of pools
Manages a pool of grids (to be used for example as tmp objects), but can also be used to instantiate ...
Provides all information about a quickstep kind.