(git:374b731)
Loading...
Searching...
No Matches
qs_neighbor_lists.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
9!> \brief Generate the atomic neighbor lists.
10!> \par History
11!> - List rebuild for sab_orb neighbor list (10.09.2002,MK)
12!> - List rebuild for all lists (25.09.2002,MK)
13!> - Row-wise parallelized version (16.06.2003,MK)
14!> - Row- and column-wise parallelized version (19.07.2003,MK)
15!> - bug fix for non-periodic case (23.02.06,MK)
16!> - major refactoring (25.07.10,jhu)
17!> \author Matthias Krack (08.10.1999,26.03.2002,16.06.2003)
18! **************************************************************************************************
27 USE cell_types, ONLY: cell_type,&
28 get_cell,&
29 pbc,&
36 USE cp_output_handling, ONLY: cp_p_file,&
49 USE input_constants, ONLY: &
57 USE kinds, ONLY: default_string_length,&
58 dp,&
59 int_8
60 USE kpoint_types, ONLY: kpoint_type
62 USE mathlib, ONLY: erfc_cutoff
68 USE periodic_table, ONLY: ptable
69 USE physcon, ONLY: bohr
75 USE qs_gcp_types, ONLY: qs_gcp_type
76 USE qs_kind_types, ONLY: get_qs_kind,&
79 USE qs_ks_types, ONLY: get_ks_env,&
82 USE qs_neighbor_list_types, ONLY: &
87 USE string_utilities, ONLY: compress,&
93 USE util, ONLY: locate,&
94 sort
95 USE xtb_types, ONLY: get_xtb_atom_param,&
97#include "./base/base_uses.f90"
98
99 IMPLICIT NONE
100
101 PRIVATE
102
103! **************************************************************************************************
105 INTEGER, DIMENSION(:), POINTER :: list, &
106 list_local_a_index, &
107 list_local_b_index, &
108 list_1d, &
109 list_a_mol, &
110 list_b_mol
111 END TYPE local_atoms_type
112! **************************************************************************************************
113
114 CHARACTER(len=*), PARAMETER, PRIVATE :: modulen = 'qs_neighbor_lists'
115
116 ! private counter, used to version qs neighbor lists
117 INTEGER, SAVE, PRIVATE :: last_qs_neighbor_list_id_nr = 0
118
119 ! Public subroutines
123CONTAINS
124
125! **************************************************************************************************
126!> \brief free the internals of atom2d
127!> \param atom2d ...
128!> \param
129! **************************************************************************************************
130 SUBROUTINE atom2d_cleanup(atom2d)
131 TYPE(local_atoms_type), DIMENSION(:) :: atom2d
132
133 CHARACTER(len=*), PARAMETER :: routinen = 'atom2d_cleanup'
134
135 INTEGER :: handle, ikind
136
137 CALL timeset(routinen, handle)
138 DO ikind = 1, SIZE(atom2d)
139 NULLIFY (atom2d(ikind)%list)
140 IF (ASSOCIATED(atom2d(ikind)%list_local_a_index)) THEN
141 DEALLOCATE (atom2d(ikind)%list_local_a_index)
142 END IF
143 IF (ASSOCIATED(atom2d(ikind)%list_local_b_index)) THEN
144 DEALLOCATE (atom2d(ikind)%list_local_b_index)
145 END IF
146 IF (ASSOCIATED(atom2d(ikind)%list_a_mol)) THEN
147 DEALLOCATE (atom2d(ikind)%list_a_mol)
148 END IF
149 IF (ASSOCIATED(atom2d(ikind)%list_b_mol)) THEN
150 DEALLOCATE (atom2d(ikind)%list_b_mol)
151 END IF
152 IF (ASSOCIATED(atom2d(ikind)%list_1d)) THEN
153 DEALLOCATE (atom2d(ikind)%list_1d)
154 END IF
155 END DO
156 CALL timestop(handle)
157
158 END SUBROUTINE atom2d_cleanup
159
160! **************************************************************************************************
161!> \brief Build some distribution structure of atoms, refactored from build_qs_neighbor_lists
162!> \param atom2d output
163!> \param distribution_1d ...
164!> \param distribution_2d ...
165!> \param atomic_kind_set ...
166!> \param molecule_set ...
167!> \param molecule_only ...
168!> \param particle_set ...
169!> \author JH
170! **************************************************************************************************
171 SUBROUTINE atom2d_build(atom2d, distribution_1d, distribution_2d, &
172 atomic_kind_set, molecule_set, molecule_only, particle_set)
173 TYPE(local_atoms_type), DIMENSION(:) :: atom2d
174 TYPE(distribution_1d_type), POINTER :: distribution_1d
175 TYPE(distribution_2d_type), POINTER :: distribution_2d
176 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
177 TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
178 LOGICAL :: molecule_only
179 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
180
181 CHARACTER(len=*), PARAMETER :: routinen = 'atom2d_build'
182
183 INTEGER :: atom_a, handle, ia, iat, iatom, &
184 iatom_local, ikind, imol, natom, &
185 natom_a, natom_local_a, natom_local_b, &
186 nel, nkind
187 INTEGER, ALLOCATABLE, DIMENSION(:) :: atom2mol, atom_of_kind, listindex, &
188 listsort
189 INTEGER, DIMENSION(:), POINTER :: local_cols_array, local_rows_array
190
191 CALL timeset(routinen, handle)
192
193 nkind = SIZE(atomic_kind_set)
194 natom = SIZE(particle_set)
195 CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, atom_of_kind=atom_of_kind)
196
197 IF (molecule_only) THEN
198 ALLOCATE (atom2mol(natom))
199 DO imol = 1, SIZE(molecule_set)
200 DO iat = molecule_set(imol)%first_atom, molecule_set(imol)%last_atom
201 atom2mol(iat) = imol
202 END DO
203 END DO
204 END IF
205
206 DO ikind = 1, nkind
207 NULLIFY (atom2d(ikind)%list)
208 NULLIFY (atom2d(ikind)%list_local_a_index)
209 NULLIFY (atom2d(ikind)%list_local_b_index)
210 NULLIFY (atom2d(ikind)%list_1d)
211 NULLIFY (atom2d(ikind)%list_a_mol)
212 NULLIFY (atom2d(ikind)%list_b_mol)
213
214 CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
215
216 natom_a = SIZE(atom2d(ikind)%list)
217
218 natom_local_a = distribution_2d%n_local_rows(ikind)
219 natom_local_b = distribution_2d%n_local_cols(ikind)
220 local_rows_array => distribution_2d%local_rows(ikind)%array
221 local_cols_array => distribution_2d%local_cols(ikind)%array
222
223 nel = distribution_1d%n_el(ikind)
224 ALLOCATE (atom2d(ikind)%list_1d(nel))
225 DO iat = 1, nel
226 ia = distribution_1d%list(ikind)%array(iat)
227 atom2d(ikind)%list_1d(iat) = atom_of_kind(ia)
228 END DO
229
230 ALLOCATE (listsort(natom_a), listindex(natom_a))
231 listsort(1:natom_a) = atom2d(ikind)%list(1:natom_a)
232 CALL sort(listsort, natom_a, listindex)
233 ! Block rows
234 IF (natom_local_a > 0) THEN
235 ALLOCATE (atom2d(ikind)%list_local_a_index(natom_local_a))
236 ALLOCATE (atom2d(ikind)%list_a_mol(natom_local_a))
237 atom2d(ikind)%list_a_mol(:) = 0
238
239 ! Build index vector for mapping
240 DO iatom_local = 1, natom_local_a
241 atom_a = local_rows_array(iatom_local)
242 iatom = locate(listsort, atom_a)
243 atom2d(ikind)%list_local_a_index(iatom_local) = listindex(iatom)
244 IF (molecule_only) atom2d(ikind)%list_a_mol(iatom_local) = atom2mol(atom_a)
245 END DO
246
247 END IF
248
249 ! Block columns
250 IF (natom_local_b > 0) THEN
251
252 ALLOCATE (atom2d(ikind)%list_local_b_index(natom_local_b))
253 ALLOCATE (atom2d(ikind)%list_b_mol(natom_local_b))
254 atom2d(ikind)%list_b_mol(:) = 0
255
256 ! Build index vector for mapping
257 DO iatom_local = 1, natom_local_b
258 atom_a = local_cols_array(iatom_local)
259 iatom = locate(listsort, atom_a)
260 atom2d(ikind)%list_local_b_index(iatom_local) = listindex(iatom)
261 IF (molecule_only) atom2d(ikind)%list_b_mol(iatom_local) = atom2mol(atom_a)
262 END DO
263
264 END IF
265
266 DEALLOCATE (listsort, listindex)
267
268 END DO
269
270 CALL timestop(handle)
271
272 END SUBROUTINE atom2d_build
273
274! **************************************************************************************************
275!> \brief Build all the required neighbor lists for Quickstep.
276!> \param qs_env ...
277!> \param para_env ...
278!> \param molecular ...
279!> \param force_env_section ...
280!> \date 28.08.2000
281!> \par History
282!> - Major refactoring (25.07.2010,jhu)
283!> \author MK
284!> \version 1.0
285! **************************************************************************************************
286 SUBROUTINE build_qs_neighbor_lists(qs_env, para_env, molecular, force_env_section)
287 TYPE(qs_environment_type), POINTER :: qs_env
288 TYPE(mp_para_env_type), POINTER :: para_env
289 LOGICAL, OPTIONAL :: molecular
290 TYPE(section_vals_type), POINTER :: force_env_section
291
292 CHARACTER(len=*), PARAMETER :: routinen = 'build_qs_neighbor_lists'
293
294 CHARACTER(LEN=2) :: element_symbol, element_symbol2
295 CHARACTER(LEN=default_string_length) :: print_key_path
296 INTEGER :: handle, hfx_pot, ikind, ingp, iw, jkind, &
297 maxatom, ngp, nkind, zat
298 LOGICAL :: all_potential_present, almo, dftb, do_hfx, dokp, gth_potential_present, &
299 lri_optbas, lrigpw, mic, molecule_only, nddo, paw_atom, paw_atom_present, rigpw, &
300 sgp_potential_present, xtb
301 LOGICAL, ALLOCATABLE, DIMENSION(:) :: all_present, aux_fit_present, aux_present, &
302 core_present, default_present, nonbond1_atom, nonbond2_atom, oce_present, orb_present, &
303 ppl_present, ppnl_present, ri_present, xb1_atom, xb2_atom
304 REAL(dp) :: almo_rcov, almo_rvdw, eps_schwarz, &
305 omega, pdist, rcut, roperator, subcells
306 REAL(dp), ALLOCATABLE, DIMENSION(:) :: all_pot_rad, aux_fit_radius, c_radius, calpha, &
307 core_radius, oce_radius, orb_radius, ppl_radius, ppnl_radius, ri_radius, zeff
308 REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: pair_radius, pair_radius_lb
309 TYPE(all_potential_type), POINTER :: all_potential
310 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
311 TYPE(cell_type), POINTER :: cell
312 TYPE(cp_logger_type), POINTER :: logger
313 TYPE(dft_control_type), POINTER :: dft_control
314 TYPE(distribution_1d_type), POINTER :: distribution_1d
315 TYPE(distribution_2d_type), POINTER :: distribution_2d
316 TYPE(ewald_environment_type), POINTER :: ewald_env
317 TYPE(gth_potential_type), POINTER :: gth_potential
318 TYPE(gto_basis_set_type), POINTER :: aux_basis_set, aux_fit_basis_set, &
319 orb_basis_set, ri_basis_set
320 TYPE(kpoint_type), POINTER :: kpoints
321 TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:) :: atom2d
322 TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
323 TYPE(neighbor_list_set_p_type), DIMENSION(:), POINTER :: saa_list, sab_all, sab_almo, &
324 sab_cn, sab_core, sab_gcp, sab_kp, sab_kp_nosym, sab_lrc, sab_orb, sab_scp, sab_se, &
325 sab_tbe, sab_vdw, sab_xb, sab_xtb_nonbond, sab_xtbe, sac_ae, sac_lri, sac_ppl, sap_oce, &
326 sap_ppnl, soa_list, soo_list
327 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
328 TYPE(paw_proj_set_type), POINTER :: paw_proj
329 TYPE(qs_dftb_atom_type), POINTER :: dftb_atom
330 TYPE(qs_dispersion_type), POINTER :: dispersion_env
331 TYPE(qs_gcp_type), POINTER :: gcp_env
332 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
333 TYPE(qs_ks_env_type), POINTER :: ks_env
334 TYPE(section_vals_type), POINTER :: hfx_sections, neighbor_list_section
335 TYPE(sgp_potential_type), POINTER :: sgp_potential
336 TYPE(xtb_atom_type), POINTER :: xtb_atom
337
338 CALL timeset(routinen, handle)
339 NULLIFY (logger)
340 logger => cp_get_default_logger()
341
342 NULLIFY (atomic_kind_set, qs_kind_set, cell, neighbor_list_section, &
343 distribution_1d, distribution_2d, gth_potential, sgp_potential, orb_basis_set, &
344 particle_set, molecule_set, dft_control, ks_env)
345
346 NULLIFY (sab_orb)
347 NULLIFY (sac_ae)
348 NULLIFY (sac_ppl)
349 NULLIFY (sac_lri)
350 NULLIFY (sap_ppnl)
351 NULLIFY (sap_oce)
352 NULLIFY (sab_se)
353 NULLIFY (sab_lrc)
354 NULLIFY (sab_tbe)
355 NULLIFY (sab_xtbe)
356 NULLIFY (sab_core)
357 NULLIFY (sab_xb)
358 NULLIFY (sab_xtb_nonbond)
359 NULLIFY (sab_all)
360 NULLIFY (sab_vdw)
361 NULLIFY (sab_cn)
362 NULLIFY (soo_list)
363 NULLIFY (sab_scp)
364 NULLIFY (sab_almo)
365 NULLIFY (sab_kp)
366 NULLIFY (sab_kp_nosym)
367
368 CALL get_qs_env(qs_env, &
369 ks_env=ks_env, &
370 atomic_kind_set=atomic_kind_set, &
371 qs_kind_set=qs_kind_set, &
372 cell=cell, &
373 kpoints=kpoints, &
374 distribution_2d=distribution_2d, &
375 local_particles=distribution_1d, &
376 particle_set=particle_set, &
377 molecule_set=molecule_set, &
378 dft_control=dft_control)
379
380 neighbor_list_section => section_vals_get_subs_vals(force_env_section, "DFT%PRINT%NEIGHBOR_LISTS")
381
382 ! This sets the id number of the qs neighbor lists, new lists, means new version
383 ! new version implies new sparsity of the matrices
384 last_qs_neighbor_list_id_nr = last_qs_neighbor_list_id_nr + 1
385 CALL set_ks_env(ks_env=ks_env, neighbor_list_id=last_qs_neighbor_list_id_nr)
386
387 CALL get_ks_env(ks_env=ks_env, &
388 sab_orb=sab_orb, &
389 sac_ae=sac_ae, &
390 sac_ppl=sac_ppl, &
391 sac_lri=sac_lri, &
392 sab_vdw=sab_vdw, &
393 sap_ppnl=sap_ppnl, &
394 sap_oce=sap_oce, &
395 sab_se=sab_se, &
396 sab_lrc=sab_lrc, &
397 sab_tbe=sab_tbe, &
398 sab_xtbe=sab_xtbe, &
399 sab_core=sab_core, &
400 sab_xb=sab_xb, &
401 sab_xtb_nonbond=sab_xtb_nonbond, &
402 sab_scp=sab_scp, &
403 sab_all=sab_all, &
404 sab_almo=sab_almo, &
405 sab_kp=sab_kp, &
406 sab_kp_nosym=sab_kp_nosym)
407
408 dokp = (kpoints%nkp > 0)
409 nddo = dft_control%qs_control%semi_empirical
410 dftb = dft_control%qs_control%dftb
411 xtb = dft_control%qs_control%xtb
412 almo = dft_control%qs_control%do_almo_scf
413 lrigpw = (dft_control%qs_control%method_id == do_method_lrigpw)
414 rigpw = (dft_control%qs_control%method_id == do_method_rigpw)
415 lri_optbas = dft_control%qs_control%lri_optbas
416
417 ! molecular lists
418 molecule_only = .false.
419 IF (PRESENT(molecular)) molecule_only = molecular
420 ! minimum image convention (MIC)
421 mic = molecule_only
422 IF (dokp) THEN
423 ! no MIC for kpoints
424 mic = .false.
425 ELSEIF (nddo) THEN
426 ! enforce MIC for interaction lists in SE
427 mic = .true.
428 END IF
429 pdist = dft_control%qs_control%pairlist_radius
430
431 hfx_sections => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
432 CALL section_vals_get(hfx_sections, explicit=do_hfx)
433
434 CALL get_atomic_kind_set(atomic_kind_set, maxatom=maxatom)
435 CALL get_qs_kind_set(qs_kind_set, paw_atom_present=paw_atom_present, &
436 gth_potential_present=gth_potential_present, &
437 sgp_potential_present=sgp_potential_present, &
438 all_potential_present=all_potential_present)
439
440 CALL section_vals_val_get(qs_env%input, "DFT%SUBCELLS", r_val=subcells)
441
442 ! Allocate work storage
443 nkind = SIZE(atomic_kind_set)
444 ALLOCATE (orb_present(nkind), aux_fit_present(nkind), aux_present(nkind), &
445 default_present(nkind), core_present(nkind))
446 ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), c_radius(nkind), &
447 core_radius(nkind), calpha(nkind), zeff(nkind))
448 orb_radius(:) = 0.0_dp
449 aux_fit_radius(:) = 0.0_dp
450 c_radius(:) = 0.0_dp
451 core_radius(:) = 0.0_dp
452 calpha(:) = 0.0_dp
453 zeff(:) = 0.0_dp
454
455 ALLOCATE (pair_radius(nkind, nkind))
456 IF (gth_potential_present .OR. sgp_potential_present) THEN
457 ALLOCATE (ppl_present(nkind), ppl_radius(nkind))
458 ppl_radius = 0.0_dp
459 ALLOCATE (ppnl_present(nkind), ppnl_radius(nkind))
460 ppnl_radius = 0.0_dp
461 END IF
462 IF (paw_atom_present) THEN
463 ALLOCATE (oce_present(nkind), oce_radius(nkind))
464 oce_radius = 0.0_dp
465 END IF
466 IF (all_potential_present .OR. sgp_potential_present) THEN
467 ALLOCATE (all_present(nkind), all_pot_rad(nkind))
468 all_pot_rad = 0.0_dp
469 END IF
470
471 ! Initialize the local data structures
472 ALLOCATE (atom2d(nkind))
473 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
474 molecule_set, molecule_only, particle_set=particle_set)
475
476 DO ikind = 1, nkind
477
478 CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
479
480 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type="ORB")
481 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_basis_set, basis_type="AUX")
482 CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type="AUX_FIT")
483
484 CALL get_qs_kind(qs_kind_set(ikind), &
485 paw_proj_set=paw_proj, &
486 paw_atom=paw_atom, &
487 all_potential=all_potential, &
488 gth_potential=gth_potential, &
489 sgp_potential=sgp_potential)
490
491 IF (dftb) THEN
492 ! Set the interaction radius for the neighbor lists (DFTB case)
493 ! This includes all interactions (orbitals and short range pair potential) except vdW
494 CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
495 CALL get_dftb_atom_param(dftb_parameter=dftb_atom, &
496 cutoff=orb_radius(ikind), &
497 defined=orb_present(ikind))
498 ELSE
499 IF (ASSOCIATED(orb_basis_set)) THEN
500 orb_present(ikind) = .true.
501 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
502 ELSE
503 orb_present(ikind) = .false.
504 END IF
505 END IF
506
507 IF (ASSOCIATED(aux_basis_set)) THEN
508 aux_present(ikind) = .true.
509 ELSE
510 aux_present(ikind) = .false.
511 END IF
512
513 IF (ASSOCIATED(aux_fit_basis_set)) THEN
514 aux_fit_present(ikind) = .true.
515 CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
516 ELSE
517 aux_fit_present(ikind) = .false.
518 END IF
519
520 ! core overlap
521 CALL get_qs_kind(qs_kind_set(ikind), &
522 alpha_core_charge=calpha(ikind), &
523 core_charge_radius=core_radius(ikind), &
524 zeff=zeff(ikind))
525 IF (zeff(ikind) /= 0._dp .AND. calpha(ikind) /= 0._dp) THEN
526 core_present(ikind) = .true.
527 ELSE
528 core_present(ikind) = .false.
529 END IF
530
531 ! Pseudopotentials
532 IF (gth_potential_present .OR. sgp_potential_present) THEN
533 IF (ASSOCIATED(gth_potential)) THEN
534 CALL get_potential(potential=gth_potential, &
535 ppl_present=ppl_present(ikind), &
536 ppl_radius=ppl_radius(ikind), &
537 ppnl_present=ppnl_present(ikind), &
538 ppnl_radius=ppnl_radius(ikind))
539 ELSE IF (ASSOCIATED(sgp_potential)) THEN
540 CALL get_potential(potential=sgp_potential, &
541 ppl_present=ppl_present(ikind), &
542 ppl_radius=ppl_radius(ikind), &
543 ppnl_present=ppnl_present(ikind), &
544 ppnl_radius=ppnl_radius(ikind))
545 ELSE
546 ppl_present(ikind) = .false.
547 ppnl_present(ikind) = .false.
548 END IF
549 END IF
550
551 ! GAPW
552 IF (paw_atom_present) THEN
553 IF (paw_atom) THEN
554 oce_present(ikind) = .true.
555 CALL get_paw_proj_set(paw_proj_set=paw_proj, rcprj=oce_radius(ikind))
556 ELSE
557 oce_present(ikind) = .false.
558 END IF
559 END IF
560
561 ! Check the presence of an all electron potential or ERFC potential
562 IF (all_potential_present .OR. sgp_potential_present) THEN
563 all_present(ikind) = .false.
564 all_pot_rad(ikind) = 0.0_dp
565 IF (ASSOCIATED(all_potential)) THEN
566 all_present(ikind) = .true.
567 CALL get_potential(potential=all_potential, core_charge_radius=all_pot_rad(ikind))
568 ELSE IF (ASSOCIATED(sgp_potential)) THEN
569 IF (sgp_potential%ecp_local) THEN
570 all_present(ikind) = .true.
571 CALL get_potential(potential=sgp_potential, core_charge_radius=all_pot_rad(ikind))
572 END IF
573 END IF
574 END IF
575
576 END DO
577
578 ! Build the orbital-orbital overlap neighbor lists
579 IF (pdist < 0.0_dp) THEN
580 pdist = max(plane_distance(1, 0, 0, cell), &
581 plane_distance(0, 1, 0, cell), &
582 plane_distance(0, 0, 1, cell))
583 END IF
584 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius, pdist)
585 CALL build_neighbor_lists(sab_orb, particle_set, atom2d, cell, pair_radius, &
586 mic=mic, subcells=subcells, molecular=molecule_only, nlname="sab_orb")
587 CALL set_ks_env(ks_env=ks_env, sab_orb=sab_orb)
588 CALL write_neighbor_lists(sab_orb, particle_set, cell, para_env, neighbor_list_section, &
589 "/SAB_ORB", "sab_orb", "ORBITAL ORBITAL")
590
591 ! Build orbital-orbital list containing all the pairs, to be used with
592 ! non-symmetric operators. Beware: the cutoff of the orbital-orbital overlap
593 ! might not be optimal. It should be verified for each operator.
594 IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
595 CALL build_neighbor_lists(sab_all, particle_set, atom2d, cell, pair_radius, &
596 mic=mic, symmetric=.false., subcells=subcells, molecular=molecule_only, nlname="sab_all")
597 CALL set_ks_env(ks_env=ks_env, sab_all=sab_all)
598 END IF
599
600 ! Build the core-core overlap neighbor lists
601 IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
602 CALL pair_radius_setup(core_present, core_present, core_radius, core_radius, pair_radius)
603 CALL build_neighbor_lists(sab_core, particle_set, atom2d, cell, pair_radius, subcells=subcells, &
604 operator_type="PP", nlname="sab_core")
605 CALL set_ks_env(ks_env=ks_env, sab_core=sab_core)
606 CALL write_neighbor_lists(sab_core, particle_set, cell, para_env, neighbor_list_section, &
607 "/SAB_CORE", "sab_core", "CORE CORE")
608 END IF
609
610 IF (dokp) THEN
611 ! We try to guess an integration radius for K-points
612 ! For non-HFX calculations we use the overlap list
613 ! For HFX we use the interaction radius of kinds (ORB or ADMM basis)
614 ! plus a range for the operator
615 IF (do_hfx) THEN
616
617 !case study on the HFX potential: TC, SR or Overlap?
618 CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
619
620 SELECT CASE (hfx_pot)
621 CASE (do_potential_id)
622 roperator = 0.0_dp
624 CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
625 CASE (do_potential_short)
626 CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%OMEGA", r_val=omega)
627 CALL section_vals_val_get(hfx_sections, "SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
628 CALL erfc_cutoff(eps_schwarz, omega, roperator)
629 CASE DEFAULT
630 cpabort("HFX potential not available for K-points (NYI)")
631 END SELECT
632
633 IF (dft_control%do_admm) THEN
634 CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, &
635 pair_radius)
636
637 !We cannot accept a pair radius smaller than the ORB overlap, for sanity reasons
638 ALLOCATE (pair_radius_lb(nkind, nkind))
639 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius_lb)
640 DO jkind = 1, nkind
641 DO ikind = 1, nkind
642 IF (pair_radius(ikind, jkind) + cutoff_screen_factor*roperator .LE. pair_radius_lb(ikind, jkind)) &
643 pair_radius(ikind, jkind) = pair_radius_lb(ikind, jkind) - roperator
644 END DO
645 END DO
646 ELSE
647 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
648 END IF
649 pair_radius = pair_radius + cutoff_screen_factor*roperator
650 ELSE
651 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
652 END IF
653 CALL build_neighbor_lists(sab_kp, particle_set, atom2d, cell, pair_radius, &
654 subcells=subcells, nlname="sab_kp")
655 CALL set_ks_env(ks_env=ks_env, sab_kp=sab_kp)
656
657 IF (do_hfx) THEN
658 CALL build_neighbor_lists(sab_kp_nosym, particle_set, atom2d, cell, pair_radius, &
659 subcells=subcells, nlname="sab_kp_nosym", symmetric=.false.)
660 CALL set_ks_env(ks_env=ks_env, sab_kp_nosym=sab_kp_nosym)
661 END IF
662 END IF
663
664 ! Build orbital GTH-PPL operator overlap list
665 IF (gth_potential_present .OR. sgp_potential_present) THEN
666 IF (any(ppl_present)) THEN
667 CALL pair_radius_setup(orb_present, ppl_present, orb_radius, ppl_radius, pair_radius)
668 CALL build_neighbor_lists(sac_ppl, particle_set, atom2d, cell, pair_radius, &
669 subcells=subcells, operator_type="ABC", nlname="sac_ppl")
670 CALL set_ks_env(ks_env=ks_env, sac_ppl=sac_ppl)
671 CALL write_neighbor_lists(sac_ppl, particle_set, cell, para_env, neighbor_list_section, &
672 "/SAC_PPL", "sac_ppl", "ORBITAL GTH-PPL")
673 IF (lrigpw) THEN
674 IF (qs_env%lri_env%ppl_ri) THEN
675 CALL build_neighbor_lists(sac_lri, particle_set, atom2d, cell, pair_radius, &
676 subcells=subcells, symmetric=.false., operator_type="PP", nlname="sac_lri")
677 CALL set_ks_env(ks_env=ks_env, sac_lri=sac_lri)
678 END IF
679 END IF
680 END IF
681
682 IF (any(ppnl_present)) THEN
683 CALL pair_radius_setup(orb_present, ppnl_present, orb_radius, ppnl_radius, pair_radius)
684 CALL build_neighbor_lists(sap_ppnl, particle_set, atom2d, cell, pair_radius, &
685 subcells=subcells, operator_type="ABBA", nlname="sap_ppnl")
686 CALL set_ks_env(ks_env=ks_env, sap_ppnl=sap_ppnl)
687 CALL write_neighbor_lists(sap_ppnl, particle_set, cell, para_env, neighbor_list_section, &
688 "/SAP_PPNL", "sap_ppnl", "ORBITAL GTH-PPNL")
689 END IF
690 END IF
691
692 IF (paw_atom_present) THEN
693 ! Build orbital-GAPW projector overlap list
694 IF (any(oce_present)) THEN
695 CALL pair_radius_setup(orb_present, oce_present, orb_radius, oce_radius, pair_radius)
696 CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
697 subcells=subcells, operator_type="ABBA", nlname="sap_oce")
698 CALL set_ks_env(ks_env=ks_env, sap_oce=sap_oce)
699 CALL write_neighbor_lists(sap_oce, particle_set, cell, para_env, neighbor_list_section, &
700 "/SAP_OCE", "sap_oce", "ORBITAL(A) PAW-PRJ")
701 END IF
702 END IF
703
704 ! Build orbital-ERFC potential list
705 IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
706 IF (all_potential_present .OR. sgp_potential_present) THEN
707 CALL pair_radius_setup(orb_present, all_present, orb_radius, all_pot_rad, pair_radius)
708 CALL build_neighbor_lists(sac_ae, particle_set, atom2d, cell, pair_radius, &
709 subcells=subcells, operator_type="ABC", nlname="sac_ae")
710 CALL set_ks_env(ks_env=ks_env, sac_ae=sac_ae)
711 CALL write_neighbor_lists(sac_ae, particle_set, cell, para_env, neighbor_list_section, &
712 "/SAC_AE", "sac_ae", "ORBITAL ERFC POTENTIAL")
713 END IF
714 END IF
715
716 IF (nddo) THEN
717 ! Semi-empirical neighbor lists
718 default_present = .true.
719 c_radius = dft_control%qs_control%se_control%cutoff_cou
720 ! Build the neighbor lists for the Hartree terms
721 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
722 IF (dft_control%qs_control%se_control%do_ewald_gks) THEN
723 ! Use MIC for the periodic code of GKS
724 CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, mic=mic, &
725 subcells=subcells, nlname="sab_se")
726 ELSE
727 CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, &
728 subcells=subcells, nlname="sab_se")
729 END IF
730 CALL set_ks_env(ks_env=ks_env, sab_se=sab_se)
731 CALL write_neighbor_lists(sab_se, particle_set, cell, para_env, neighbor_list_section, &
732 "/SAB_SE", "sab_se", "HARTREE INTERACTIONS")
733
734 ! If requested build the SE long-range correction neighbor list
735 IF ((dft_control%qs_control%se_control%do_ewald) .AND. &
736 (dft_control%qs_control%se_control%integral_screening /= do_se_is_slater)) THEN
737 c_radius = dft_control%qs_control%se_control%cutoff_lrc
738 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
739 CALL build_neighbor_lists(sab_lrc, particle_set, atom2d, cell, pair_radius, &
740 subcells=subcells, nlname="sab_lrc")
741 CALL set_ks_env(ks_env=ks_env, sab_lrc=sab_lrc)
742 CALL write_neighbor_lists(sab_lrc, particle_set, cell, para_env, neighbor_list_section, &
743 "/SAB_LRC", "sab_lrc", "SE LONG-RANGE CORRECTION")
744 END IF
745 END IF
746
747 IF (dftb) THEN
748 ! Build the neighbor lists for the DFTB Ewald methods
749 IF (dft_control%qs_control%dftb_control%do_ewald) THEN
750 CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
751 CALL ewald_env_get(ewald_env, rcut=rcut)
752 c_radius = rcut
753 CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
754 CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
755 subcells=subcells, nlname="sab_tbe")
756 CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
757 END IF
758
759 ! Build the neighbor lists for the DFTB vdW pair potential
760 IF (dft_control%qs_control%dftb_control%dispersion) THEN
761 IF (dft_control%qs_control%dftb_control%dispersion_type == dispersion_uff) THEN
762 DO ikind = 1, nkind
763 CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
764 CALL get_dftb_atom_param(dftb_parameter=dftb_atom, rcdisp=c_radius(ikind))
765 END DO
766 default_present = .true.
767 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
768 CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
769 subcells=subcells, nlname="sab_vdw")
770 CALL set_ks_env(ks_env=ks_env, sab_vdw=sab_vdw)
771 END IF
772 END IF
773 END IF
774
775 IF (xtb) THEN
776 ! Build the neighbor lists for the xTB Ewald method
777 IF (dft_control%qs_control%xtb_control%do_ewald) THEN
778 CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
779 CALL ewald_env_get(ewald_env, rcut=rcut)
780 c_radius = rcut
781 CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
782 CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
783 subcells=subcells, nlname="sab_tbe")
784 CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
785 END IF
786 ! SR part of Coulomb interaction
787 DO ikind = 1, nkind
788 CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_atom)
789 CALL get_xtb_atom_param(xtb_parameter=xtb_atom, rcut=c_radius(ikind))
790 END DO
791 default_present = .true.
792 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
793 CALL build_neighbor_lists(sab_xtbe, particle_set, atom2d, cell, pair_radius, &
794 subcells=subcells, nlname="sab_xtbe")
795 CALL set_ks_env(ks_env=ks_env, sab_xtbe=sab_xtbe)
796 ! XB list
797 ALLOCATE (xb1_atom(nkind), xb2_atom(nkind))
798 c_radius = 0.5_dp*dft_control%qs_control%xtb_control%xb_radius
799 DO ikind = 1, nkind
800 CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
801 IF (zat == 17 .OR. zat == 35 .OR. zat == 53 .OR. zat == 85) THEN
802 xb1_atom(ikind) = .true.
803 ELSE
804 xb1_atom(ikind) = .false.
805 END IF
806 IF (zat == 7 .OR. zat == 8 .OR. zat == 15 .OR. zat == 16) THEN
807 xb2_atom(ikind) = .true.
808 ELSE
809 xb2_atom(ikind) = .false.
810 END IF
811 END DO
812 CALL pair_radius_setup(xb1_atom, xb2_atom, c_radius, c_radius, pair_radius)
813 CALL build_neighbor_lists(sab_xb, particle_set, atom2d, cell, pair_radius, &
814 symmetric=.false., subcells=subcells, operator_type="PP", nlname="sab_xb")
815 CALL set_ks_env(ks_env=ks_env, sab_xb=sab_xb)
816 CALL write_neighbor_lists(sab_xb, particle_set, cell, para_env, neighbor_list_section, &
817 "/SAB_XB", "sab_xb", "XB bonding")
818
819 ! nonbonded interactions list
820 IF (dft_control%qs_control%xtb_control%do_nonbonded) THEN
821 ngp = SIZE(dft_control%qs_control%xtb_control%nonbonded%pot)
822 ALLOCATE (nonbond1_atom(nkind), nonbond2_atom(nkind))
823 nonbond1_atom = .false.
824 nonbond2_atom = .false.
825 DO ingp = 1, ngp
826 DO ikind = 1, nkind
827 rcut = sqrt(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%rcutsq)
828 c_radius = rcut
829 CALL get_atomic_kind(atomic_kind_set(ikind), element_symbol=element_symbol)
830 CALL uppercase(element_symbol)
831 IF (trim(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at1) == trim(element_symbol)) THEN
832 nonbond1_atom(ikind) = .true.
833 DO jkind = 1, nkind
834 CALL get_atomic_kind(atomic_kind_set(jkind), element_symbol=element_symbol2)
835 CALL uppercase(element_symbol2)
836 IF (trim(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at2) == trim(element_symbol2)) THEN
837 nonbond2_atom(jkind) = .true.
838 END IF
839 END DO
840 END IF
841 END DO
842 CALL pair_radius_setup(nonbond1_atom, nonbond2_atom, c_radius, c_radius, pair_radius)
843 CALL build_neighbor_lists(sab_xtb_nonbond, particle_set, atom2d, cell, pair_radius, &
844 symmetric=.false., subcells=subcells, operator_type="PP", nlname="sab_xtb_nonbond")
845 CALL set_ks_env(ks_env=ks_env, sab_xtb_nonbond=sab_xtb_nonbond)
846 CALL write_neighbor_lists(sab_xtb_nonbond, particle_set, cell, para_env, neighbor_list_section, &
847 "/SAB_XTB_NONBOND", "sab_xtb_nonbond", "XTB NONBONDED INTERACTIONS")
848 END DO
849 END IF
850 END IF
851
852 ! Build the neighbor lists for the vdW pair potential
853 CALL get_qs_env(qs_env=qs_env, dispersion_env=dispersion_env)
854 sab_vdw => dispersion_env%sab_vdw
855 sab_cn => dispersion_env%sab_cn
856 IF (dispersion_env%type == xc_vdw_fun_pairpot .OR. xtb) THEN
857 c_radius(:) = dispersion_env%rc_disp
858 default_present = .true. !include all atoms in vdW (even without basis)
859 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
860 CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
861 subcells=subcells, operator_type="PP", nlname="sab_vdw")
862 dispersion_env%sab_vdw => sab_vdw
863
864 IF (xtb .OR. dispersion_env%pp_type == vdw_pairpot_dftd3 .OR. &
865 dispersion_env%pp_type == vdw_pairpot_dftd3bj) THEN
866 ! Build the neighbor lists for coordination numbers as needed by the DFT-D3 method
867 ! This is also needed for the xTB Hamiltonian
868 DO ikind = 1, nkind
869 CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
870 c_radius(ikind) = 4._dp*ptable(zat)%covalent_radius*bohr
871 END DO
872 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
873 CALL build_neighbor_lists(sab_cn, particle_set, atom2d, cell, pair_radius, &
874 subcells=subcells, operator_type="PP", nlname="sab_cn")
875 dispersion_env%sab_cn => sab_cn
876 END IF
877 END IF
878
879 ! Build the neighbor lists for the gCP pair potential
880 NULLIFY (gcp_env)
881 CALL get_qs_env(qs_env=qs_env, gcp_env=gcp_env)
882 IF (ASSOCIATED(gcp_env)) THEN
883 IF (gcp_env%do_gcp) THEN
884 sab_gcp => gcp_env%sab_gcp
885 DO ikind = 1, nkind
886 c_radius(ikind) = gcp_env%gcp_kind(ikind)%rcsto
887 END DO
888 CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
889 CALL build_neighbor_lists(sab_gcp, particle_set, atom2d, cell, pair_radius, &
890 subcells=subcells, operator_type="PP", nlname="sab_gcp")
891 gcp_env%sab_gcp => sab_gcp
892 ELSE
893 NULLIFY (gcp_env%sab_gcp)
894 END IF
895 END IF
896
897 IF (lrigpw .OR. lri_optbas) THEN
898 ! set neighborlists in lri_env environment
899 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
900 soo_list => qs_env%lri_env%soo_list
901 CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
902 mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
903 qs_env%lri_env%soo_list => soo_list
904 CALL write_neighbor_lists(soo_list, particle_set, cell, para_env, neighbor_list_section, &
905 "/SOO_LIST", "soo_list", "ORBITAL ORBITAL (RI)")
906 ELSEIF (rigpw) THEN
907 ALLOCATE (ri_present(nkind), ri_radius(nkind))
908 ri_present = .false.
909 ri_radius = 0.0_dp
910 DO ikind = 1, nkind
911 CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis_set, basis_type="RI_HXC")
912 IF (ASSOCIATED(ri_basis_set)) THEN
913 ri_present(ikind) = .true.
914 CALL get_gto_basis_set(gto_basis_set=ri_basis_set, kind_radius=ri_radius(ikind))
915 ELSE
916 ri_present(ikind) = .false.
917 END IF
918 END DO
919 ! set neighborlists in lri_env environment
920 CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
921 soo_list => qs_env%lri_env%soo_list
922 CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
923 mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
924 qs_env%lri_env%soo_list => soo_list
925 !
926 CALL pair_radius_setup(ri_present, ri_present, ri_radius, ri_radius, pair_radius)
927 saa_list => qs_env%lri_env%saa_list
928 CALL build_neighbor_lists(saa_list, particle_set, atom2d, cell, pair_radius, &
929 mic=mic, molecular=molecule_only, subcells=subcells, nlname="saa_list")
930 qs_env%lri_env%saa_list => saa_list
931 !
932 CALL pair_radius_setup(ri_present, orb_present, ri_radius, orb_radius, pair_radius)
933 soa_list => qs_env%lri_env%soa_list
934 CALL build_neighbor_lists(soa_list, particle_set, atom2d, cell, pair_radius, &
935 mic=mic, symmetric=.false., molecular=molecule_only, &
936 subcells=subcells, operator_type="ABC", nlname="saa_list")
937 qs_env%lri_env%soa_list => soa_list
938 END IF
939
940 ! Build the neighbor lists for the ALMO delocalization
941 IF (almo) THEN
942 DO ikind = 1, nkind
943 CALL get_atomic_kind(atomic_kind_set(ikind), rcov=almo_rcov, rvdw=almo_rvdw)
944 ! multiply the radius by some hard-coded number
945 c_radius(ikind) = max(almo_rcov, almo_rvdw)*bohr* &
947 END DO
948 default_present = .true. !include all atoms (even without basis)
949 CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
950 CALL build_neighbor_lists(sab_almo, particle_set, atom2d, cell, pair_radius, &
951 subcells=subcells, operator_type="PP", nlname="sab_almo")
952 CALL set_ks_env(ks_env=ks_env, sab_almo=sab_almo)
953 END IF
954
955 ! Print particle distribution
956 print_key_path = "PRINT%DISTRIBUTION"
957 IF (btest(cp_print_key_should_output(logger%iter_info, force_env_section, &
958 print_key_path), &
959 cp_p_file)) THEN
960 iw = cp_print_key_unit_nr(logger=logger, &
961 basis_section=force_env_section, &
962 print_key_path=print_key_path, &
963 extension=".out")
964 CALL write_neighbor_distribution(sab_orb, qs_kind_set, iw, para_env)
965 CALL cp_print_key_finished_output(unit_nr=iw, &
966 logger=logger, &
967 basis_section=force_env_section, &
968 print_key_path=print_key_path)
969 END IF
970
971 ! Release work storage
972 CALL atom2d_cleanup(atom2d)
973
974 DEALLOCATE (atom2d)
975 DEALLOCATE (orb_present, default_present, core_present)
976 DEALLOCATE (orb_radius, aux_fit_radius, c_radius, core_radius)
977 DEALLOCATE (calpha, zeff)
978 DEALLOCATE (pair_radius)
979 IF (gth_potential_present .OR. sgp_potential_present) THEN
980 DEALLOCATE (ppl_present, ppl_radius)
981 DEALLOCATE (ppnl_present, ppnl_radius)
982 END IF
983 IF (paw_atom_present) THEN
984 DEALLOCATE (oce_present, oce_radius)
985 END IF
986 IF (all_potential_present .OR. sgp_potential_present) THEN
987 DEALLOCATE (all_present, all_pot_rad)
988 END IF
989
990 CALL timestop(handle)
991
992 END SUBROUTINE build_qs_neighbor_lists
993
994! **************************************************************************************************
995!> \brief Build simple pair neighbor lists.
996!> \param ab_list ...
997!> \param particle_set ...
998!> \param atom ...
999!> \param cell ...
1000!> \param pair_radius ...
1001!> \param subcells ...
1002!> \param mic ...
1003!> \param symmetric ...
1004!> \param molecular ...
1005!> \param subset_of_mol ...
1006!> \param current_subset ...
1007!> \param operator_type ...
1008!> \param nlname ...
1009!> \param atomb_to_keep the list of atom indices to keep for pairs from the atom2d%b_list
1010!> \date 20.03.2002
1011!> \par History
1012!> - Major refactoring (25.07.2010,jhu)
1013!> - Added option to filter out atoms from list_b (08.2018, A. Bussy)
1014!> \author MK
1015!> \version 2.0
1016! **************************************************************************************************
1017 SUBROUTINE build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, &
1018 mic, symmetric, molecular, subset_of_mol, current_subset, &
1019 operator_type, nlname, atomb_to_keep)
1020
1021 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1022 POINTER :: ab_list
1023 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1024 TYPE(local_atoms_type), DIMENSION(:), INTENT(IN) :: atom
1025 TYPE(cell_type), POINTER :: cell
1026 REAL(dp), DIMENSION(:, :), INTENT(IN) :: pair_radius
1027 REAL(dp), INTENT(IN) :: subcells
1028 LOGICAL, INTENT(IN), OPTIONAL :: mic, symmetric, molecular
1029 INTEGER, DIMENSION(:), OPTIONAL, POINTER :: subset_of_mol
1030 INTEGER, OPTIONAL :: current_subset
1031 CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: operator_type
1032 CHARACTER(LEN=*), INTENT(IN) :: nlname
1033 INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL :: atomb_to_keep
1034
1035 CHARACTER(len=*), PARAMETER :: routinen = 'build_neighbor_lists'
1036
1037 TYPE local_lists
1038 INTEGER, DIMENSION(:), POINTER :: list
1039 END TYPE local_lists
1040
1041 INTEGER :: atom_a, atom_b, handle, i, iab, iatom, iatom_local, &
1042 iatom_subcell, icell, ikind, j, jatom, jatom_local, jcell, jkind, k, &
1043 kcell, maxat, mol_a, mol_b, nkind, otype, natom, inode, nnode, nentry
1044 INTEGER, DIMENSION(3) :: cell_b, ncell, nsubcell, periodic
1045 INTEGER, DIMENSION(:), POINTER :: index_list
1046 LOGICAL :: include_ab, my_mic, &
1047 my_molecular, my_symmetric, my_sort_atomb
1048 LOGICAL, ALLOCATABLE, DIMENSION(:) :: pres_a, pres_b
1049 REAL(dp) :: rab2, rab2_max, rab_max, rabm, deth, subcell_scale
1050 REAL(dp), DIMENSION(3) :: r, rab, ra, rb, sab_max, sb, &
1051 sb_pbc, sb_min, sb_max, rab_pbc, pd, sab_max_guard
1052 INTEGER, ALLOCATABLE, DIMENSION(:) :: nlista, nlistb
1053 TYPE(local_lists), DIMENSION(:), POINTER :: lista, listb
1054 TYPE(neighbor_list_p_type), &
1055 ALLOCATABLE, DIMENSION(:) :: kind_a
1056 TYPE(neighbor_list_set_type), POINTER :: neighbor_list_set
1057 TYPE(subcell_type), DIMENSION(:, :, :), &
1058 POINTER :: subcell
1059 REAL(kind=dp), DIMENSION(:, :), ALLOCATABLE :: r_pbc
1061 DIMENSION(:), POINTER :: nl_iterator
1062
1063 CALL timeset(routinen//"_"//trim(nlname), handle)
1064
1065 ! input options
1066 my_mic = .false.
1067 IF (PRESENT(mic)) my_mic = mic
1068 my_symmetric = .true.
1069 IF (PRESENT(symmetric)) my_symmetric = symmetric
1070 my_molecular = .false.
1071 ! if we have a molecular NL, MIC has to be used
1072 IF (PRESENT(molecular)) my_molecular = molecular
1073 ! check for operator types
1074 IF (PRESENT(operator_type)) THEN
1075 SELECT CASE (operator_type)
1076 CASE ("AB")
1077 otype = 1 ! simple overlap
1078 CASE ("ABC")
1079 otype = 2 ! for three center operators
1080 cpassert(.NOT. my_molecular)
1081 my_symmetric = .false.
1082 CASE ("ABBA")
1083 otype = 3 ! for separable nonlocal operators
1084 my_symmetric = .false.
1085 CASE ("PP")
1086 otype = 4 ! simple atomic pair potential list
1087 CASE default
1088 cpabort("")
1089 END SELECT
1090 ELSE
1091 ! default is a simple AB neighbor list
1092 otype = 1
1093 END IF
1094 my_sort_atomb = .false.
1095 IF (PRESENT(atomb_to_keep)) THEN
1096 my_sort_atomb = .true.
1097 END IF
1098
1099 nkind = SIZE(atom)
1100 ! Deallocate the old neighbor list structure
1101 CALL release_neighbor_list_sets(ab_list)
1102 ! Allocate and initialize the new neighbor list structure
1103 ALLOCATE (ab_list(nkind*nkind))
1104 DO iab = 1, SIZE(ab_list)
1105 NULLIFY (ab_list(iab)%neighbor_list_set)
1106 ab_list(iab)%nl_size = -1
1107 ab_list(iab)%nl_start = -1
1108 ab_list(iab)%nl_end = -1
1109 NULLIFY (ab_list(iab)%nlist_task)
1110 END DO
1111
1112 ! Allocate and initialize the kind availability
1113 ALLOCATE (pres_a(nkind), pres_b(nkind))
1114 DO ikind = 1, nkind
1115 pres_a(ikind) = any(pair_radius(ikind, :) > 0._dp)
1116 pres_b(ikind) = any(pair_radius(:, ikind) > 0._dp)
1117 END DO
1118
1119 ! create a copy of the pbc'ed coordinates
1120 natom = SIZE(particle_set)
1121 ALLOCATE (r_pbc(3, natom))
1122 DO i = 1, natom
1123 r_pbc(1:3, i) = pbc(particle_set(i)%r(1:3), cell)
1124 END DO
1125
1126 ! setup the local lists of atoms
1127 maxat = 0
1128 DO ikind = 1, nkind
1129 maxat = max(maxat, SIZE(atom(ikind)%list))
1130 END DO
1131 ALLOCATE (index_list(maxat))
1132 DO i = 1, maxat
1133 index_list(i) = i
1134 END DO
1135 ALLOCATE (lista(nkind), listb(nkind), nlista(nkind), nlistb(nkind))
1136 nlista = 0
1137 nlistb = 0
1138 DO ikind = 1, nkind
1139 NULLIFY (lista(ikind)%list, listb(ikind)%list)
1140 SELECT CASE (otype)
1141 CASE (1)
1142 IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
1143 lista(ikind)%list => atom(ikind)%list_local_a_index
1144 nlista(ikind) = SIZE(lista(ikind)%list)
1145 END IF
1146 IF (ASSOCIATED(atom(ikind)%list_local_b_index)) THEN
1147 listb(ikind)%list => atom(ikind)%list_local_b_index
1148 nlistb(ikind) = SIZE(listb(ikind)%list)
1149 END IF
1150 CASE (2)
1151 IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
1152 lista(ikind)%list => atom(ikind)%list_local_a_index
1153 nlista(ikind) = SIZE(lista(ikind)%list)
1154 END IF
1155 nlistb(ikind) = SIZE(atom(ikind)%list)
1156 listb(ikind)%list => index_list
1157 CASE (3)
1158 CALL combine_lists(lista(ikind)%list, nlista(ikind), ikind, atom)
1159 nlistb(ikind) = SIZE(atom(ikind)%list)
1160 listb(ikind)%list => index_list
1161 CASE (4)
1162 nlista(ikind) = SIZE(atom(ikind)%list_1d)
1163 lista(ikind)%list => atom(ikind)%list_1d
1164 nlistb(ikind) = SIZE(atom(ikind)%list)
1165 listb(ikind)%list => index_list
1166 CASE default
1167 cpabort("")
1168 END SELECT
1169 END DO
1170
1171 ! Determine max. number of local atoms
1172 maxat = 0
1173 DO ikind = 1, nkind
1174 maxat = max(maxat, nlista(ikind), nlistb(ikind))
1175 END DO
1176 ALLOCATE (kind_a(2*maxat))
1177
1178 ! Load informations about the simulation cell
1179 CALL get_cell(cell=cell, periodic=periodic, deth=deth)
1180
1181 ! Loop over all atomic kind pairs
1182 DO ikind = 1, nkind
1183 IF (.NOT. pres_a(ikind)) cycle
1184
1185 DO jkind = 1, nkind
1186 IF (.NOT. pres_b(jkind)) cycle
1187
1188 iab = ikind + nkind*(jkind - 1)
1189
1190 ! Calculate the square of the maximum interaction distance
1191 IF (pair_radius(ikind, jkind) <= 0._dp) cycle
1192 rab_max = pair_radius(ikind, jkind)
1193 IF (otype == 3) THEN
1194 ! Calculate the square of the maximum interaction distance
1195 ! for sac_max / ncell this must be the maximum over all kinds
1196 ! to be correct for three center terms involving different kinds
1197 rabm = maxval(pair_radius(:, jkind))
1198 ELSE
1199 rabm = rab_max
1200 END IF
1201 rab2_max = rabm*rabm
1202
1203 pd(1) = plane_distance(1, 0, 0, cell)
1204 pd(2) = plane_distance(0, 1, 0, cell)
1205 pd(3) = plane_distance(0, 0, 1, cell)
1206
1207 sab_max = rabm/pd
1208 sab_max_guard = 15.0_dp/pd
1209
1210 ! It makes sense to have fewer subcells for larger systems
1211 subcell_scale = ((125.0_dp**3)/deth)**(1.0_dp/6.0_dp)
1212
1213 ! guess the number of subcells for optimal performance,
1214 ! guard against crazy stuff triggered by very small rabm
1215 nsubcell(:) = int(max(1.0_dp, min(0.5_dp*subcells*subcell_scale/sab_max(:), &
1216 0.5_dp*subcells*subcell_scale/sab_max_guard(:))))
1217
1218 ! number of image cells to be considered
1219 ncell(:) = (int(sab_max(:)) + 1)*periodic(:)
1220
1221 CALL allocate_neighbor_list_set(neighbor_list_set=ab_list(iab)%neighbor_list_set, &
1222 symmetric=my_symmetric)
1223 neighbor_list_set => ab_list(iab)%neighbor_list_set
1224
1225 DO iatom_local = 1, nlista(ikind)
1226 iatom = lista(ikind)%list(iatom_local)
1227 atom_a = atom(ikind)%list(iatom)
1228 CALL add_neighbor_list(neighbor_list_set=neighbor_list_set, &
1229 atom=atom_a, &
1230 neighbor_list=kind_a(iatom_local)%neighbor_list)
1231 END DO
1232
1233 CALL allocate_subcell(subcell, nsubcell)
1234 DO iatom_local = 1, nlista(ikind)
1235 iatom = lista(ikind)%list(iatom_local)
1236 atom_a = atom(ikind)%list(iatom)
1237 r = r_pbc(:, atom_a)
1238 CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
1239 subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
1240 END DO
1241 DO k = 1, nsubcell(3)
1242 DO j = 1, nsubcell(2)
1243 DO i = 1, nsubcell(1)
1244 maxat = subcell(i, j, k)%natom + subcell(i, j, k)%natom/10
1245 ALLOCATE (subcell(i, j, k)%atom_list(maxat))
1246 subcell(i, j, k)%natom = 0
1247 END DO
1248 END DO
1249 END DO
1250 DO iatom_local = 1, nlista(ikind)
1251 iatom = lista(ikind)%list(iatom_local)
1252 atom_a = atom(ikind)%list(iatom)
1253 r = r_pbc(:, atom_a)
1254 CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
1255 subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
1256 subcell(i, j, k)%atom_list(subcell(i, j, k)%natom) = iatom_local
1257 END DO
1258
1259 DO jatom_local = 1, nlistb(jkind)
1260 jatom = listb(jkind)%list(jatom_local)
1261 atom_b = atom(jkind)%list(jatom)
1262 IF (my_sort_atomb .AND. .NOT. my_symmetric) THEN
1263 IF (.NOT. any(atomb_to_keep == atom_b)) cycle
1264 END IF
1265 IF (my_molecular) THEN
1266 mol_b = atom(jkind)%list_b_mol(jatom_local)
1267 IF (PRESENT(subset_of_mol)) THEN
1268 IF (subset_of_mol(mol_b) .NE. current_subset) cycle
1269 END IF
1270 END IF
1271 r = r_pbc(:, atom_b)
1272 CALL real_to_scaled(sb_pbc(:), r(:), cell)
1273
1274 loop2_kcell: DO kcell = -ncell(3), ncell(3)
1275 sb(3) = sb_pbc(3) + real(kcell, dp)
1276 sb_min(3) = sb(3) - sab_max(3)
1277 sb_max(3) = sb(3) + sab_max(3)
1278 IF (periodic(3) /= 0) THEN
1279 IF (sb_min(3) >= 0.5_dp) EXIT loop2_kcell
1280 IF (sb_max(3) < -0.5_dp) cycle loop2_kcell
1281 END IF
1282 cell_b(3) = kcell
1283
1284 loop2_jcell: DO jcell = -ncell(2), ncell(2)
1285 sb(2) = sb_pbc(2) + real(jcell, dp)
1286 sb_min(2) = sb(2) - sab_max(2)
1287 sb_max(2) = sb(2) + sab_max(2)
1288 IF (periodic(2) /= 0) THEN
1289 IF (sb_min(2) >= 0.5_dp) EXIT loop2_jcell
1290 IF (sb_max(2) < -0.5_dp) cycle loop2_jcell
1291 END IF
1292 cell_b(2) = jcell
1293
1294 loop2_icell: DO icell = -ncell(1), ncell(1)
1295 sb(1) = sb_pbc(1) + real(icell, dp)
1296 sb_min(1) = sb(1) - sab_max(1)
1297 sb_max(1) = sb(1) + sab_max(1)
1298 IF (periodic(1) /= 0) THEN
1299 IF (sb_min(1) >= 0.5_dp) EXIT loop2_icell
1300 IF (sb_max(1) < -0.5_dp) cycle loop2_icell
1301 END IF
1302 cell_b(1) = icell
1303
1304 CALL scaled_to_real(rb, sb, cell)
1305
1306 loop_k: DO k = 1, nsubcell(3)
1307 loop_j: DO j = 1, nsubcell(2)
1308 loop_i: DO i = 1, nsubcell(1)
1309
1310 ! FIXME for non-periodic systems, the whole subcell trick is skipped
1311 ! yielding a Natom**2 pair list build.
1312 IF (periodic(3) /= 0) THEN
1313 IF (sb_max(3) < subcell(i, j, k)%s_min(3)) EXIT loop_k
1314 IF (sb_min(3) >= subcell(i, j, k)%s_max(3)) cycle loop_k
1315 END IF
1316
1317 IF (periodic(2) /= 0) THEN
1318 IF (sb_max(2) < subcell(i, j, k)%s_min(2)) EXIT loop_j
1319 IF (sb_min(2) >= subcell(i, j, k)%s_max(2)) cycle loop_j
1320 END IF
1321
1322 IF (periodic(1) /= 0) THEN
1323 IF (sb_max(1) < subcell(i, j, k)%s_min(1)) EXIT loop_i
1324 IF (sb_min(1) >= subcell(i, j, k)%s_max(1)) cycle loop_i
1325 END IF
1326
1327 IF (subcell(i, j, k)%natom == 0) cycle
1328
1329 DO iatom_subcell = 1, subcell(i, j, k)%natom
1330 iatom_local = subcell(i, j, k)%atom_list(iatom_subcell)
1331 iatom = lista(ikind)%list(iatom_local)
1332 atom_a = atom(ikind)%list(iatom)
1333 IF (my_molecular) THEN
1334 mol_a = atom(ikind)%list_a_mol(iatom_local)
1335 IF (mol_a /= mol_b) cycle
1336 END IF
1337 IF (my_symmetric) THEN
1338 IF (atom_a > atom_b) THEN
1339 include_ab = (modulo(atom_a + atom_b, 2) /= 0)
1340 ELSE
1341 include_ab = (modulo(atom_a + atom_b, 2) == 0)
1342 END IF
1343 IF (my_sort_atomb) THEN
1344 IF ((.NOT. any(atomb_to_keep == atom_b)) .AND. &
1345 (.NOT. any(atomb_to_keep == atom_a))) THEN
1346 include_ab = .false.
1347 END IF
1348 END IF
1349 ELSE
1350 include_ab = .true.
1351 END IF
1352 IF (include_ab) THEN
1353 ra(:) = r_pbc(:, atom_a)
1354 rab(:) = rb(:) - ra(:)
1355 rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
1356 IF (rab2 < rab2_max) THEN
1357 include_ab = .true.
1358 IF (my_mic) THEN
1359 ! only if rab is minimum image the pair will be included
1360 ! ideally the range of the pair list is < L/2 so
1361 ! that this never triggers
1362 rab_pbc(:) = pbc(rab(:), cell)
1363 IF (sum((rab_pbc - rab)**2) > epsilon(1.0_dp)) THEN
1364 include_ab = .false.
1365 END IF
1366 END IF
1367 IF (include_ab) THEN
1368 CALL add_neighbor_node( &
1369 neighbor_list=kind_a(iatom_local)%neighbor_list, &
1370 neighbor=atom_b, &
1371 cell=cell_b, &
1372 r=rab, &
1373 nkind=nkind)
1374 END IF
1375 END IF
1376 END IF
1377 END DO
1378
1379 END DO loop_i
1380 END DO loop_j
1381 END DO loop_k
1382
1383 END DO loop2_icell
1384 END DO loop2_jcell
1385 END DO loop2_kcell
1386
1387 END DO
1388
1389 CALL deallocate_subcell(subcell)
1390
1391 END DO
1392 END DO
1393
1394 SELECT CASE (otype)
1395 CASE (1:2, 4)
1396 CASE (3)
1397 DO ikind = 1, nkind
1398 DEALLOCATE (lista(ikind)%list)
1399 END DO
1400 CASE default
1401 cpabort("")
1402 END SELECT
1403 DEALLOCATE (kind_a, pres_a, pres_b, lista, listb, nlista, nlistb)
1404 DEALLOCATE (index_list)
1405 DEALLOCATE (r_pbc)
1406
1407 nentry = 0
1408 CALL neighbor_list_iterator_create(nl_iterator, ab_list)
1409 DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1410 CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode)
1411 IF (inode == 1) nentry = nentry + nnode
1412 END DO
1413 CALL neighbor_list_iterator_release(nl_iterator)
1414 !
1415 ALLOCATE (ab_list(1)%nlist_task(nentry))
1416 ab_list(1)%nl_size = nentry
1417 DO iab = 2, SIZE(ab_list)
1418 ab_list(iab)%nl_size = nentry
1419 ab_list(iab)%nlist_task => ab_list(1)%nlist_task
1420 END DO
1421 !
1422 nentry = 0
1423 CALL neighbor_list_iterator_create(nl_iterator, ab_list)
1424 DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1425 nentry = nentry + 1
1426 CALL get_iterator_task(nl_iterator, ab_list(1)%nlist_task(nentry))
1427 CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, nkind=nkind)
1428 iab = (ikind - 1)*nkind + jkind
1429 IF (ab_list(iab)%nl_start < 0) ab_list(iab)%nl_start = nentry
1430 IF (ab_list(iab)%nl_end < 0) THEN
1431 ab_list(iab)%nl_end = nentry
1432 ELSE
1433 cpassert(ab_list(iab)%nl_end + 1 == nentry)
1434 ab_list(iab)%nl_end = nentry
1435 END IF
1436 END DO
1437 CALL neighbor_list_iterator_release(nl_iterator)
1438
1439 CALL timestop(handle)
1440
1441 END SUBROUTINE build_neighbor_lists
1442
1443! **************************************************************************************************
1444!> \brief Build a neighborlist
1445!> \param ab_list ...
1446!> \param basis_set_a ...
1447!> \param basis_set_b ...
1448!> \param qs_env ...
1449!> \param mic ...
1450!> \param symmetric ...
1451!> \param molecular ...
1452!> \param operator_type ...
1453!> \date 14.03.2016
1454!> \author JGH
1455! **************************************************************************************************
1456 SUBROUTINE setup_neighbor_list(ab_list, basis_set_a, basis_set_b, qs_env, &
1457 mic, symmetric, molecular, operator_type)
1458
1459 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1460 POINTER :: ab_list
1461 TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set_a
1462 TYPE(gto_basis_set_p_type), DIMENSION(:), &
1463 OPTIONAL, POINTER :: basis_set_b
1464 TYPE(qs_environment_type), POINTER :: qs_env
1465 LOGICAL, INTENT(IN), OPTIONAL :: mic, symmetric, molecular
1466 CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: operator_type
1467
1468 CHARACTER(LEN=4) :: otype
1469 INTEGER :: ikind, nkind
1470 LOGICAL :: my_mic, my_molecular, my_symmetric
1471 LOGICAL, ALLOCATABLE, DIMENSION(:) :: a_present, b_present
1472 REAL(dp), ALLOCATABLE, DIMENSION(:) :: a_radius, b_radius
1473 REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: pair_radius
1474 TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1475 TYPE(cell_type), POINTER :: cell
1476 TYPE(distribution_1d_type), POINTER :: distribution_1d
1477 TYPE(distribution_2d_type), POINTER :: distribution_2d
1478 TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_a, basis_b
1479 TYPE(gto_basis_set_type), POINTER :: abas, bbas
1480 TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:) :: atom2d
1481 TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
1482 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1483
1484 basis_a => basis_set_a
1485 IF (PRESENT(basis_set_b)) THEN
1486 basis_b => basis_set_b
1487 my_symmetric = .false.
1488 ELSE
1489 basis_b => basis_set_a
1490 my_symmetric = .true.
1491 END IF
1492 IF (PRESENT(symmetric)) my_symmetric = symmetric
1493
1494 IF (PRESENT(mic)) THEN
1495 my_mic = mic
1496 ELSE
1497 my_mic = .false.
1498 END IF
1499
1500 IF (PRESENT(molecular)) THEN
1501 my_molecular = molecular
1502 ELSE
1503 my_molecular = .false.
1504 END IF
1505
1506 IF (PRESENT(operator_type)) THEN
1507 otype = operator_type
1508 ELSE
1509 ! default is a simple AB neighbor list
1510 otype = "AB"
1511 END IF
1512
1513 nkind = SIZE(basis_a)
1514 ALLOCATE (a_present(nkind), b_present(nkind))
1515 a_present = .false.
1516 b_present = .false.
1517 ALLOCATE (a_radius(nkind), b_radius(nkind))
1518 a_radius = 0.0_dp
1519 b_radius = 0.0_dp
1520 DO ikind = 1, nkind
1521 IF (ASSOCIATED(basis_a(ikind)%gto_basis_set)) THEN
1522 a_present(ikind) = .true.
1523 abas => basis_a(ikind)%gto_basis_set
1524 CALL get_gto_basis_set(gto_basis_set=abas, kind_radius=a_radius(ikind))
1525 END IF
1526 IF (ASSOCIATED(basis_b(ikind)%gto_basis_set)) THEN
1527 b_present(ikind) = .true.
1528 bbas => basis_b(ikind)%gto_basis_set
1529 CALL get_gto_basis_set(gto_basis_set=bbas, kind_radius=b_radius(ikind))
1530 END IF
1531 END DO
1532
1533 ALLOCATE (pair_radius(nkind, nkind))
1534 pair_radius = 0.0_dp
1535 CALL pair_radius_setup(a_present, b_present, a_radius, b_radius, pair_radius)
1536
1537 CALL get_qs_env(qs_env, &
1538 atomic_kind_set=atomic_kind_set, &
1539 cell=cell, &
1540 distribution_2d=distribution_2d, &
1541 local_particles=distribution_1d, &
1542 particle_set=particle_set, &
1543 molecule_set=molecule_set)
1544
1545 ALLOCATE (atom2d(nkind))
1546 CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
1547 molecule_set, my_molecular, particle_set=particle_set)
1548 CALL build_neighbor_lists(ab_list, particle_set, atom2d, cell, pair_radius, &
1549 mic=my_mic, symmetric=my_symmetric, molecular=my_molecular, &
1550 subcells=2.0_dp, nlname="AUX_NL")
1551
1552 CALL atom2d_cleanup(atom2d)
1553
1554 DEALLOCATE (a_present, b_present, a_radius, b_radius, pair_radius, atom2d)
1555
1556 END SUBROUTINE setup_neighbor_list
1557
1558! **************************************************************************************************
1559!> \brief ...
1560!> \param list ...
1561!> \param n ...
1562!> \param ikind ...
1563!> \param atom ...
1564! **************************************************************************************************
1565 SUBROUTINE combine_lists(list, n, ikind, atom)
1566 INTEGER, DIMENSION(:), POINTER :: list
1567 INTEGER, INTENT(OUT) :: n
1568 INTEGER, INTENT(IN) :: ikind
1569 TYPE(local_atoms_type), DIMENSION(:), INTENT(IN) :: atom
1570
1571 INTEGER :: i, ib, na, nb
1572 INTEGER, DIMENSION(:), POINTER :: lista, listb
1573
1574 cpassert(.NOT. ASSOCIATED(list))
1575
1576 lista => atom(ikind)%list_local_a_index
1577 listb => atom(ikind)%list_local_b_index
1578
1579 IF (ASSOCIATED(lista)) THEN
1580 na = SIZE(lista)
1581 ELSE
1582 na = 0
1583 END IF
1584
1585 IF (ASSOCIATED(listb)) THEN
1586 nb = SIZE(listb)
1587 ELSE
1588 nb = 0
1589 END IF
1590
1591 ALLOCATE (list(na + nb))
1592
1593 n = na
1594 IF (na .GT. 0) list(1:na) = lista(1:na)
1595 IF (nb .GT. 0) THEN
1596 loopb: DO ib = 1, nb
1597 DO i = 1, na
1598 IF (listb(ib) == list(i)) cycle loopb
1599 END DO
1600 n = n + 1
1601 list(n) = listb(ib)
1602 END DO loopb
1603 END IF
1604 END SUBROUTINE combine_lists
1605
1606! **************************************************************************************************
1607
1608! **************************************************************************************************
1609!> \brief ...
1610!> \param present_a ...
1611!> \param present_b ...
1612!> \param radius_a ...
1613!> \param radius_b ...
1614!> \param pair_radius ...
1615!> \param prmin ...
1616! **************************************************************************************************
1617 SUBROUTINE pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
1618 LOGICAL, DIMENSION(:), INTENT(IN) :: present_a, present_b
1619 REAL(dp), DIMENSION(:), INTENT(IN) :: radius_a, radius_b
1620 REAL(dp), DIMENSION(:, :), INTENT(OUT) :: pair_radius
1621 REAL(dp), INTENT(IN), OPTIONAL :: prmin
1622
1623 INTEGER :: i, j, nkind
1624 REAL(dp) :: rrmin
1625
1626 nkind = SIZE(present_a)
1627
1628 pair_radius = 0._dp
1629
1630 rrmin = 0.0_dp
1631 IF (PRESENT(prmin)) rrmin = prmin
1632
1633 DO i = 1, nkind
1634 IF (.NOT. present_a(i)) cycle
1635 DO j = 1, nkind
1636 IF (.NOT. present_b(j)) cycle
1637 pair_radius(i, j) = radius_a(i) + radius_b(j)
1638 pair_radius(i, j) = max(pair_radius(i, j), rrmin)
1639 END DO
1640 END DO
1641
1642 END SUBROUTINE pair_radius_setup
1643
1644! **************************************************************************************************
1645!> \brief Print the distribution of the simple pair neighbor list.
1646!> \param ab ...
1647!> \param qs_kind_set ...
1648!> \param output_unit ...
1649!> \param para_env ...
1650!> \date 19.06.2003
1651!> \author MK
1652!> \version 1.0
1653! **************************************************************************************************
1654 SUBROUTINE write_neighbor_distribution(ab, qs_kind_set, output_unit, para_env)
1655 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1656 POINTER :: ab
1657 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1658 INTEGER, INTENT(in) :: output_unit
1659 TYPE(mp_para_env_type), POINTER :: para_env
1660
1661 CHARACTER(len=*), PARAMETER :: routinen = 'write_neighbor_distribution'
1662 LOGICAL, PARAMETER :: full_output = .false.
1663
1664 INTEGER :: handle, ikind, inode, ipe, jkind, n, &
1665 nkind, nnode
1666 INTEGER(int_8) :: nblock_max, nblock_sum, nelement_max, &
1667 nelement_sum, tmp(2)
1668 INTEGER, ALLOCATABLE, DIMENSION(:) :: nblock, nelement, nnsgf
1669 TYPE(gto_basis_set_type), POINTER :: orb_basis_set
1671 DIMENSION(:), POINTER :: nl_iterator
1672
1673 CALL timeset(routinen, handle)
1674 associate(mype => para_env%mepos + 1, npe => para_env%num_pe)
1675
1676 ! Allocate work storage
1677 ALLOCATE (nblock(npe), nelement(npe))
1678 nblock(:) = 0
1679 nelement(:) = 0
1680 nkind = SIZE(qs_kind_set)
1681 ALLOCATE (nnsgf(nkind))
1682 nnsgf = 1
1683 DO ikind = 1, nkind
1684 CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
1685 IF (ASSOCIATED(orb_basis_set)) THEN
1686 CALL get_gto_basis_set(gto_basis_set=orb_basis_set, nsgf=nnsgf(ikind))
1687 END IF
1688 END DO
1689
1690 CALL neighbor_list_iterator_create(nl_iterator, ab)
1691 DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1692 CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, inode=inode, nnode=nnode)
1693 IF (inode == 1) THEN
1694 n = nnsgf(ikind)*nnsgf(jkind)
1695 nblock(mype) = nblock(mype) + nnode
1696 nelement(mype) = nelement(mype) + n*nnode
1697 END IF
1698 END DO
1699 CALL neighbor_list_iterator_release(nl_iterator)
1700
1701 IF (full_output) THEN
1702 ! XXXXXXXX should gather/scatter this on ionode
1703 CALL para_env%sum(nblock)
1704 CALL para_env%sum(nelement)
1705
1706 nblock_sum = sum(int(nblock, kind=int_8))
1707 nelement_sum = sum(int(nelement, kind=int_8))
1708 ELSE
1709 nblock_sum = nblock(mype)
1710 nblock_max = nblock(mype)
1711 nelement_sum = nelement(mype)
1712 nelement_max = nelement(mype)
1713 tmp = (/nblock_sum, nelement_sum/)
1714 CALL para_env%sum(tmp)
1715 nblock_sum = tmp(1); nelement_sum = tmp(2)
1716 tmp = (/nblock_max, nelement_max/)
1717 CALL para_env%max(tmp)
1718 nblock_max = tmp(1); nelement_max = tmp(2)
1719 END IF
1720
1721 IF (output_unit > 0) THEN
1722 IF (full_output) THEN
1723 WRITE (unit=output_unit, &
1724 fmt="(/,/,T2,A,/,/,T3,A,/,/,(T4,I6,T27,I10,T55,I10))") &
1725 "DISTRIBUTION OF THE NEIGHBOR LISTS", &
1726 "Process Number of particle pairs Number of matrix elements", &
1727 (ipe - 1, nblock(ipe), nelement(ipe), ipe=1, npe)
1728 WRITE (unit=output_unit, fmt="(/,T7,A3,T27,I10,T55,I10)") &
1729 "Sum", sum(nblock), sum(nelement)
1730 ELSE
1731 WRITE (unit=output_unit, fmt="(/,T2,A)") "DISTRIBUTION OF THE NEIGHBOR LISTS"
1732 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Total number of particle pairs:", nblock_sum
1733 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Total number of matrix elements:", nelement_sum
1734 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Average number of particle pairs:", (nblock_sum + npe - 1)/npe
1735 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Maximum number of particle pairs:", nblock_max
1736 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Average number of matrix element:", (nelement_sum + npe - 1)/npe
1737 WRITE (unit=output_unit, fmt="(T15,A,T68,I13)") "Maximum number of matrix elements:", nelement_max
1738 END IF
1739 END IF
1740 END associate
1741
1742 ! Release work storage
1743
1744 DEALLOCATE (nblock, nelement, nnsgf)
1745
1746 CALL timestop(handle)
1747
1748 END SUBROUTINE write_neighbor_distribution
1749
1750! **************************************************************************************************
1751!> \brief Write a set of neighbor lists to the output unit.
1752!> \param ab ...
1753!> \param particle_set ...
1754!> \param cell ...
1755!> \param para_env ...
1756!> \param neighbor_list_section ...
1757!> \param nl_type ...
1758!> \param middle_name ...
1759!> \param nlname ...
1760!> \date 04.03.2002
1761!> \par History
1762!> - Adapted to the new parallelized neighbor list version
1763!> (26.06.2003,MK)
1764!> \author MK
1765!> \version 1.0
1766! **************************************************************************************************
1767 SUBROUTINE write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, &
1768 nl_type, middle_name, nlname)
1769
1770 TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1771 POINTER :: ab
1772 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1773 TYPE(cell_type), POINTER :: cell
1774 TYPE(mp_para_env_type), POINTER :: para_env
1775 TYPE(section_vals_type), POINTER :: neighbor_list_section
1776 CHARACTER(LEN=*), INTENT(IN) :: nl_type, middle_name, nlname
1777
1778 CHARACTER(LEN=default_string_length) :: string, unit_str
1779 INTEGER :: iatom, inode, iw, jatom, nneighbor, nnode
1780 INTEGER, DIMENSION(3) :: cell_b
1781 REAL(dp) :: dab, unit_conv
1782 REAL(dp), DIMENSION(3) :: ra, rab, rb
1783 TYPE(cp_logger_type), POINTER :: logger
1784 TYPE(neighbor_list_iterator_p_type), &
1785 DIMENSION(:), POINTER :: nl_iterator
1786
1787 NULLIFY (logger)
1788 logger => cp_get_default_logger()
1789 IF (btest(cp_print_key_should_output(logger%iter_info, neighbor_list_section, &
1790 trim(nl_type)), &
1791 cp_p_file)) THEN
1792 iw = cp_print_key_unit_nr(logger=logger, &
1793 basis_section=neighbor_list_section, &
1794 print_key_path=trim(nl_type), &
1795 extension=".out", &
1796 middle_name=trim(middle_name), &
1797 local=.true., &
1798 log_filename=.false., &
1799 file_position="REWIND")
1800 associate(mype => para_env%mepos)
1801 CALL section_vals_val_get(neighbor_list_section, "UNIT", c_val=unit_str)
1802 unit_conv = cp_unit_from_cp2k(1.0_dp, trim(unit_str))
1803
1804 ! Print headline
1805 string = ""
1806 WRITE (unit=string, fmt="(A,I5,A)") &
1807 trim(nlname)//" IN "//trim(unit_str)//" (PROCESS", mype, ")"
1808 CALL compress(string)
1809 IF (iw > 0) WRITE (unit=iw, fmt="(/,/,T2,A)") trim(string)
1810
1811 nneighbor = 0
1812
1813 CALL neighbor_list_iterator_create(nl_iterator, ab)
1814 DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1815 CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode, &
1816 iatom=iatom, jatom=jatom, cell=cell_b, r=rab)
1817 nneighbor = nneighbor + 1
1818 ra(:) = pbc(particle_set(iatom)%r, cell)
1819 rb(:) = ra(:) + rab(:)
1820 dab = sqrt(rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3))
1821 IF (iw > 0) THEN
1822 IF (inode == 1) THEN
1823 WRITE (unit=iw, fmt="(/,T2,I5,3X,I6,3X,3F12.6)") &
1824 iatom, nnode, ra(1:3)*unit_conv
1825 END IF
1826 WRITE (unit=iw, fmt="(T10,I6,3X,3I4,3F12.6,2X,F12.6)") &
1827 jatom, cell_b(1:3), rb(1:3)*unit_conv, dab*unit_conv
1828 END IF
1829 END DO
1830 CALL neighbor_list_iterator_release(nl_iterator)
1831
1832 string = ""
1833 WRITE (unit=string, fmt="(A,I12,A,I12)") &
1834 "Total number of neighbor interactions for process", mype, ":", &
1835 nneighbor
1836 CALL compress(string)
1837 IF (iw > 0) WRITE (unit=iw, fmt="(/,T2,A)") trim(string)
1838 CALL cp_print_key_finished_output(unit_nr=iw, &
1839 logger=logger, &
1840 basis_section=neighbor_list_section, &
1841 print_key_path=trim(nl_type), &
1842 local=.true.)
1843 END associate
1844 END IF
1845
1846 END SUBROUTINE write_neighbor_lists
1847
1848END MODULE qs_neighbor_lists
static GRID_HOST_DEVICE int modulo(int a, int m)
Equivalent of Fortran's MODULO, which always return a positive number. https://gcc....
Types for all ALMO-based methods.
real(kind=dp), parameter, public almo_max_cutoff_multiplier
Definition atom.F:9
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind_set(atomic_kind_set, atom_of_kind, kind_of, natom_of_kind, maxatom, natom, nshell, fist_potential_present, shell_present, shell_adiabatic, shell_check_distance, damping_present)
Get attributes of an atomic kind set.
subroutine, public get_atomic_kind(atomic_kind, fist_potential, element_symbol, name, mass, kind_number, natom, atom_list, rcov, rvdw, z, qeff, apol, cpol, mm_radius, shell, shell_active, damping)
Get attributes of an atomic kind.
subroutine, public get_gto_basis_set(gto_basis_set, name, aliases, norm_type, kind_radius, ncgf, nset, nsgf, cgf_symbol, sgf_symbol, norm_cgf, set_radius, lmax, lmin, lx, ly, lz, m, ncgf_set, npgf, nsgf_set, nshell, cphi, pgf_radius, sphi, scon, zet, first_cgf, first_sgf, l, last_cgf, last_sgf, n, gcc, maxco, maxl, maxpgf, maxsgf_set, maxshell, maxso, nco_sum, npgf_sum, nshell_sum, maxder, short_kind_radius)
...
Handles all functions related to the CELL.
Definition cell_types.F:15
subroutine, public scaled_to_real(r, s, cell)
Transform scaled cell coordinates real coordinates. r=h*s.
Definition cell_types.F:516
subroutine, public real_to_scaled(s, r, cell)
Transform real to scaled cell coordinates. s=h_inv*r.
Definition cell_types.F:486
subroutine, public get_cell(cell, alpha, beta, gamma, deth, orthorhombic, abc, periodic, h, h_inv, symmetry_id, tag)
Get informations about a simulation cell.
Definition cell_types.F:195
real(kind=dp) function, public plane_distance(h, k, l, cell)
Calculate the distance between two lattice planes as defined by a triple of Miller indices (hkl).
Definition cell_types.F:252
Defines control structures, which contain the parameters and the settings for the DFT-based calculati...
various routines to log and control the output. The idea is that decisions about where to log should ...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer function, public cp_print_key_unit_nr(logger, basis_section, print_key_path, extension, middle_name, local, log_filename, ignore_should_output, file_form, file_position, file_action, file_status, do_backup, on_file, is_new_file, mpi_io, fout)
...
subroutine, public cp_print_key_finished_output(unit_nr, logger, basis_section, print_key_path, local, ignore_should_output, on_file, mpi_io)
should be called after you finish working with a unit obtained with cp_print_key_unit_nr,...
integer, parameter, public cp_p_file
integer function, public cp_print_key_should_output(iteration_info, basis_section, print_key_path, used_print_key, first_time)
returns what should be done with the given property if btest(res,cp_p_store) then the property should...
unit conversion facility
Definition cp_units.F:30
real(kind=dp) function, public cp_unit_from_cp2k(value, unit_str, defaults, power)
converts from the internal cp2k units to the given unit
Definition cp_units.F:1179
stores a lists of integer that are local to a processor. The idea is that these integers represent ob...
stores a mapping of 2D info (e.g. matrix) on a 2D processor distribution (i.e. blacs grid) where cpus...
subroutine, public ewald_env_get(ewald_env, ewald_type, alpha, eps_pol, epsilon, gmax, ns_max, o_spline, group, para_env, poisson_section, precs, rcut, do_multipoles, max_multipole, do_ipol, max_ipol_iter, interaction_cutoffs, cell_hmat)
Purpose: Get the EWALD environment.
Definition of the atomic potential types.
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public do_method_rigpw
integer, parameter, public dispersion_uff
integer, parameter, public vdw_pairpot_dftd3
integer, parameter, public do_potential_truncated
integer, parameter, public do_potential_id
integer, parameter, public do_method_lrigpw
integer, parameter, public do_potential_short
integer, parameter, public do_se_is_slater
integer, parameter, public xc_vdw_fun_pairpot
integer, parameter, public vdw_pairpot_dftd3bj
objects that represent the structure of input sections and the data contained in an input section
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public int_8
Definition kinds.F:54
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
Types and basic routines needed for a kpoint calculation.
2- and 3-center electron repulsion integral routines based on libint2 Currently available operators: ...
real(kind=dp), parameter, public cutoff_screen_factor
An array-based list which grows on demand. When the internal array is full, a new array of twice the ...
Definition list.F:24
Collection of simple mathematical functions and subroutines.
Definition mathlib.F:15
subroutine, public erfc_cutoff(eps, omg, r_cutoff)
compute a truncation radius for the shortrange operator
Definition mathlib.F:1689
Interface to the message passing library MPI.
Define the data structure for the molecule information.
Define the data structure for the particle information.
subroutine, public get_paw_proj_set(paw_proj_set, csprj, chprj, first_prj, first_prjs, last_prj, local_oce_sphi_h, local_oce_sphi_s, maxl, ncgauprj, nsgauprj, nsatbas, nsotot, nprj, o2nindex, n2oindex, rcprj, rzetprj, zisomin, zetprj)
Get informations about a paw projectors set.
Periodic Table related data definitions.
type(atom), dimension(0:nelem), public ptable
Definition of physical constants:
Definition physcon.F:68
real(kind=dp), parameter, public bohr
Definition physcon.F:147
Definition of the DFTB parameter types.
Working with the DFTB parameter types.
subroutine, public get_dftb_atom_param(dftb_parameter, name, typ, defined, z, zeff, natorb, lmax, skself, occupation, eta, energy, cutoff, xi, di, rcdisp, dudq)
...
Definition of disperson types for DFT calculations.
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, rhs)
Get the QUICKSTEP environment.
Definition of gCP types for DFT calculations.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_r3d_rs_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
subroutine, public get_qs_kind_set(qs_kind_set, all_potential_present, tnadd_potential_present, gth_potential_present, sgp_potential_present, paw_atom_present, dft_plus_u_atom_present, maxcgf, maxsgf, maxco, maxco_proj, maxgtops, maxlgto, maxlprj, maxnset, maxsgf_set, ncgf, npgf, nset, nsgf, nshell, maxpol, maxlppl, maxlppnl, maxppnl, nelectron, maxder, max_ngrid_rad, max_sph_harm, maxg_iso_not0, lmax_rho0, basis_rcut, basis_type, total_zeff_corr)
Get attributes of an atomic kind set.
subroutine, public set_ks_env(ks_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, complex_ks, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, kinetic, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_ks_im_kp, vppl, rho_core, rho_nlcc, rho_nlcc_g, vee, neighbor_list_id, kpoints, sab_orb, sab_all, sac_ae, sac_ppl, sac_lri, sap_ppnl, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_vdw, sab_scp, sab_almo, sab_kp, sab_kp_nosym, task_list, task_list_soft, subsys, dft_control, dbcsr_dist, distribution_2d, pw_env, para_env, blacs_env)
...
subroutine, public get_ks_env(ks_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, complex_ks, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, kinetic, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_ks_im_kp, rho, rho_xc, vppl, rho_core, rho_nlcc, rho_nlcc_g, vee, neighbor_list_id, sab_orb, sab_all, sac_ae, sac_ppl, sac_lri, sap_ppnl, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_vdw, sab_scp, sab_almo, sab_kp, sab_kp_nosym, task_list, task_list_soft, kpoints, do_kpoints, atomic_kind_set, qs_kind_set, cell, cell_ref, use_ref_cell, particle_set, energy, force, local_particles, local_molecules, molecule_kind_set, molecule_set, subsys, cp_subsys, virial, results, atprop, nkind, natom, dft_control, dbcsr_dist, distribution_2d, pw_env, para_env, blacs_env, nelectron_total, nelectron_spin)
...
Define the neighbor list data types and the corresponding functionality.
subroutine, public get_iterator_task(iterator_set, task, mepos)
Captures the current state of the iterator in a neighbor_list_task_type.
subroutine, public release_neighbor_list_sets(nlists)
releases an array of neighbor_list_sets
subroutine, public add_neighbor_node(neighbor_list, neighbor, cell, r, exclusion_list, nkind)
Add a new neighbor list node to a neighbor list.
subroutine, public add_neighbor_list(neighbor_list_set, atom, neighbor_list)
Add a new neighbor list to a neighbor list set.
subroutine, public neighbor_list_iterator_create(iterator_set, nl, search, nthread)
Neighbor list iterator functions.
subroutine, public neighbor_list_iterator_release(iterator_set)
...
integer function, public neighbor_list_iterate(iterator_set, mepos)
...
subroutine, public allocate_neighbor_list_set(neighbor_list_set, symmetric)
Allocate and initialize a set of neighbor lists.
subroutine, public get_iterator_info(iterator_set, mepos, ikind, jkind, nkind, ilist, nlist, inode, nnode, iatom, jatom, r, cell)
...
Generate the atomic neighbor lists.
subroutine, public atom2d_cleanup(atom2d)
free the internals of atom2d
subroutine, public build_qs_neighbor_lists(qs_env, para_env, molecular, force_env_section)
Build all the required neighbor lists for Quickstep.
subroutine, public pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
...
subroutine, public build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, mic, symmetric, molecular, subset_of_mol, current_subset, operator_type, nlname, atomb_to_keep)
Build simple pair neighbor lists.
subroutine, public setup_neighbor_list(ab_list, basis_set_a, basis_set_b, qs_env, mic, symmetric, molecular, operator_type)
Build a neighborlist.
subroutine, public write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, nl_type, middle_name, nlname)
Write a set of neighbor lists to the output unit.
subroutine, public atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, molecule_set, molecule_only, particle_set)
Build some distribution structure of atoms, refactored from build_qs_neighbor_lists.
Utilities for string manipulations.
subroutine, public compress(string, full)
Eliminate multiple space characters in a string. If full is .TRUE., then all spaces are eliminated.
elemental subroutine, public uppercase(string)
Convert all lower case characters in a string to upper case.
subcell types and allocation routines
subroutine, public deallocate_subcell(subcell)
Deallocate a subcell grid structure.
subroutine, public give_ijk_subcell(r, i, j, k, cell, nsubcell)
...
subroutine, public allocate_subcell(subcell, nsubcell, maxatom, cell)
Allocate and initialize a subcell grid structure for the atomic neighbor search.
All kind of helpful little routines.
Definition util.F:14
pure integer function, public locate(array, x)
Purpose: Given an array array(1:n), and given a value x, a value x_index is returned which is the ind...
Definition util.F:61
Definition of the xTB parameter types.
Definition xtb_types.F:20
subroutine, public get_xtb_atom_param(xtb_parameter, symbol, aname, typ, defined, z, zeff, natorb, lmax, nao, lao, rcut, rcov, kx, eta, xgamma, alpha, zneff, nshell, nval, lval, kpoly, kappa, hen, zeta, occupation, electronegativity, chmax)
...
Definition xtb_types.F:175
Provides all information about an atomic kind.
Type defining parameters related to the simulation cell.
Definition cell_types.F:55
type of a logger, at the moment it contains just a print level starting at which level it should be l...
structure to store local (to a processor) ordered lists of integers.
distributes pairs on a 2d grid of processors
Contains information about kpoints.
stores all the informations relevant to an mpi environment
Provides all information about a quickstep kind.
calculation environment to calculate the ks matrix, holds all the needed vars. assumes that the core ...