(git:374b731)
Loading...
Searching...
No Matches
atom_pseudo.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
11 USE atom_fit, ONLY: atom_fit_pseudo
18 USE atom_output, ONLY: atom_print_basis,&
22 USE atom_types, ONLY: &
35 USE input_constants, ONLY: do_analytic,&
41 USE kinds, ONLY: default_string_length,&
42 dp
43 USE periodic_table, ONLY: nelem,&
44 ptable
45 USE physcon, ONLY: bohr
46#include "./base/base_uses.f90"
47
48 IMPLICIT NONE
49 PRIVATE
50 PUBLIC :: atom_pseudo_opt
51
52 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_pseudo'
53
54! **************************************************************************************************
55
56CONTAINS
57
58! **************************************************************************************************
59
60! **************************************************************************************************
61!> \brief ...
62!> \param atom_section ...
63! **************************************************************************************************
64 SUBROUTINE atom_pseudo_opt(atom_section)
65 TYPE(section_vals_type), POINTER :: atom_section
66
67 CHARACTER(len=*), PARAMETER :: routinen = 'atom_pseudo_opt'
68
69 CHARACTER(LEN=2) :: elem
70 CHARACTER(LEN=default_string_length), &
71 DIMENSION(:), POINTER :: tmpstringlist
72 INTEGER :: ads, do_eric, do_erie, handle, i, im, &
73 in, iw, k, l, maxl, mb, method, mo, &
74 n_meth, n_rep, nr_gh, reltyp, zcore, &
75 zval, zz
76 INTEGER, DIMENSION(0:lmat) :: maxn
77 INTEGER, DIMENSION(:), POINTER :: cn
78 LOGICAL :: do_gh, eri_c, eri_e, pp_calc
79 REAL(kind=dp) :: ne, nm
80 REAL(kind=dp), DIMENSION(0:lmat, 10) :: pocc
81 TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
82 TYPE(atom_integrals), POINTER :: ae_int, pp_int
83 TYPE(atom_optimization_type) :: optimization
84 TYPE(atom_orbitals), POINTER :: orbitals
85 TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info, atom_refs
86 TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
87 TYPE(atom_state), POINTER :: state, statepp
88 TYPE(cp_logger_type), POINTER :: logger
89 TYPE(section_vals_type), POINTER :: basis_section, method_section, &
90 opt_section, potential_section, &
91 powell_section, xc_section
92
93 CALL timeset(routinen, handle)
94
95 ! What atom do we calculate
96 CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
97 CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
98 zz = 0
99 DO i = 1, nelem
100 IF (ptable(i)%symbol == elem) THEN
101 zz = i
102 EXIT
103 END IF
104 END DO
105 IF (zz /= 1) zval = zz
106
107 ! read and set up information on the basis sets
108 ALLOCATE (ae_basis, pp_basis)
109 basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
110 NULLIFY (ae_basis%grid)
111 CALL init_atom_basis(ae_basis, basis_section, zval, "AA")
112 NULLIFY (pp_basis%grid)
113 basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
114 CALL init_atom_basis(pp_basis, basis_section, zval, "AP")
115
116 ! print general and basis set information
117 logger => cp_get_default_logger()
118 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
119 IF (iw > 0) CALL atom_print_info(zval, "Atomic Energy Calculation", iw)
120 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
121 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
122 IF (iw > 0) THEN
123 CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
124 CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
125 END IF
126 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
127
128 ! read and setup information on the pseudopotential
129 NULLIFY (potential_section)
130 potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
131 ALLOCATE (ae_pot, p_pot)
132 CALL init_atom_potential(p_pot, potential_section, zval)
133 CALL init_atom_potential(ae_pot, potential_section, -1)
134 IF (.NOT. p_pot%confinement .AND. .NOT. ae_pot%confinement) THEN
135 !set default confinement potential
136 p_pot%confinement = .true.
137 p_pot%conf_type = poly_conf
138 p_pot%scon = 2.0_dp
139 p_pot%acon = 0.5_dp
140 ! this seems to be the default in the old code
141 p_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
142 ae_pot%confinement = .true.
143 ae_pot%conf_type = poly_conf
144 ae_pot%scon = 2.0_dp
145 ae_pot%acon = 0.5_dp
146 ! this seems to be the default in the old code
147 ae_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
148 END IF
149
150 ! if the ERI's are calculated analytically, we have to precalculate them
151 eri_c = .false.
152 CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
153 IF (do_eric == do_analytic) eri_c = .true.
154 eri_e = .false.
155 CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
156 IF (do_erie == do_analytic) eri_e = .true.
157 CALL section_vals_val_get(atom_section, "USE_GAUSS_HERMITE", l_val=do_gh)
158 CALL section_vals_val_get(atom_section, "GRID_POINTS_GH", i_val=nr_gh)
159
160 ! information on the states to be calculated
161 CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
162 maxn = 0
163 CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
164 DO in = 1, min(SIZE(cn), 4)
165 maxn(in - 1) = cn(in)
166 END DO
167 DO in = 0, lmat
168 maxn(in) = min(maxn(in), ae_basis%nbas(in))
169 END DO
170
171 ! read optimization section
172 opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
173 CALL read_atom_opt_section(optimization, opt_section)
174
175 ! Check for the total number of electron configurations to be calculated
176 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
177 ! Check for the total number of method types to be calculated
178 method_section => section_vals_get_subs_vals(atom_section, "METHOD")
179 CALL section_vals_get(method_section, n_repetition=n_meth)
180
181 ! integrals
182 ALLOCATE (ae_int, pp_int)
183
184 ALLOCATE (atom_info(n_rep, n_meth), atom_refs(n_rep, n_meth))
185
186 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
187 IF (iw > 0) THEN
188 WRITE (iw, '(/," ",79("*"))')
189 WRITE (iw, '(" ",26("*"),A,25("*"))') " Calculate Reference States "
190 WRITE (iw, '(" ",79("*"))')
191 END IF
192 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
193
194 DO in = 1, n_rep
195 DO im = 1, n_meth
196
197 NULLIFY (atom_info(in, im)%atom, atom_refs(in, im)%atom)
198 CALL create_atom_type(atom_info(in, im)%atom)
199 CALL create_atom_type(atom_refs(in, im)%atom)
200
201 atom_info(in, im)%atom%optimization = optimization
202 atom_refs(in, im)%atom%optimization = optimization
203
204 atom_info(in, im)%atom%z = zval
205 atom_refs(in, im)%atom%z = zval
206 xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
207 atom_info(in, im)%atom%xc_section => xc_section
208 atom_refs(in, im)%atom%xc_section => xc_section
209
210 ALLOCATE (state, statepp)
211
212 ! get the electronic configuration
213 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
214 c_vals=tmpstringlist)
215 ! all electron configurations have to be with full core
216 pp_calc = index(tmpstringlist(1), "CORE") /= 0
217 cpassert(.NOT. pp_calc)
218
219 ! set occupations
220 CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
221 state%maxl_occ = get_maxl_occ(state%occ)
222 state%maxn_occ = get_maxn_occ(state%occ)
223 ! set number of states to be calculated
224 state%maxl_calc = max(maxl, state%maxl_occ)
225 state%maxl_calc = min(lmat, state%maxl_calc)
226 state%maxn_calc = 0
227 DO k = 0, state%maxl_calc
228 ads = 2
229 IF (state%maxn_occ(k) == 0) ads = 1
230 state%maxn_calc(k) = max(maxn(k), state%maxn_occ(k) + ads)
231 state%maxn_calc(k) = min(state%maxn_calc(k), ae_basis%nbas(k))
232 END DO
233 state%core = 0._dp
234 CALL set_atom(atom_refs(in, im)%atom, zcore=zval, pp_calc=.false.)
235
236 IF (state%multiplicity /= -1) THEN
237 ! set alpha and beta occupations
238 state%occa = 0._dp
239 state%occb = 0._dp
240 DO l = 0, lmat
241 nm = real((2*l + 1), kind=dp)
242 DO k = 1, 10
243 ne = state%occupation(l, k)
244 IF (ne == 0._dp) THEN !empty shell
245 EXIT !assume there are no holes
246 ELSEIF (ne == 2._dp*nm) THEN !closed shell
247 state%occa(l, k) = nm
248 state%occb(l, k) = nm
249 ELSEIF (state%multiplicity == -2) THEN !High spin case
250 state%occa(l, k) = min(ne, nm)
251 state%occb(l, k) = max(0._dp, ne - nm)
252 ELSE
253 state%occa(l, k) = 0.5_dp*(ne + state%multiplicity - 1._dp)
254 state%occb(l, k) = ne - state%occa(l, k)
255 END IF
256 END DO
257 END DO
258 END IF
259
260 ! set occupations for pseudopotential calculation
261 CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
262 CALL atom_set_occupation(tmpstringlist, statepp%core, pocc)
263 zcore = zval - nint(sum(statepp%core))
264 CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.true.)
265
266 statepp%occ = state%occ - statepp%core
267 statepp%occupation = 0._dp
268 DO l = 0, lmat
269 k = 0
270 DO i = 1, 10
271 IF (statepp%occ(l, i) /= 0._dp) THEN
272 k = k + 1
273 statepp%occupation(l, k) = state%occ(l, i)
274 IF (state%multiplicity /= -1) THEN
275 statepp%occa(l, k) = state%occa(l, i) - statepp%core(l, i)/2
276 statepp%occb(l, k) = state%occb(l, i) - statepp%core(l, i)/2
277 END IF
278 END IF
279 END DO
280 END DO
281
282 statepp%maxl_occ = get_maxl_occ(statepp%occ)
283 statepp%maxn_occ = get_maxn_occ(statepp%occ)
284 statepp%maxl_calc = state%maxl_calc
285 statepp%maxn_calc = 0
286 maxn = get_maxn_occ(statepp%core)
287 DO k = 0, statepp%maxl_calc
288 statepp%maxn_calc(k) = state%maxn_calc(k) - maxn(k)
289 statepp%maxn_calc(k) = min(statepp%maxn_calc(k), pp_basis%nbas(k))
290 END DO
291 statepp%multiplicity = state%multiplicity
292
293 CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_section=im)
294 CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
295 CALL set_atom(atom_info(in, im)%atom, method_type=method)
296 CALL set_atom(atom_refs(in, im)%atom, method_type=method, relativistic=reltyp)
297
298 ! calculate integrals: pseudopotential basis
299 ! general integrals
300 CALL atom_int_setup(pp_int, pp_basis, potential=p_pot, eri_coulomb=eri_c, eri_exchange=eri_e)
301 !
302 NULLIFY (pp_int%tzora, pp_int%hdkh)
303 ! potential
304 CALL atom_ppint_setup(pp_int, pp_basis, potential=p_pot)
305 !
306 CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, integrals=pp_int, potential=p_pot)
307 statepp%maxn_calc(:) = min(statepp%maxn_calc(:), pp_basis%nbas(:))
308 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
309
310 ! calculate integrals: all electron basis
311 ! general integrals
312 CALL atom_int_setup(ae_int, ae_basis, potential=ae_pot, &
313 eri_coulomb=eri_c, eri_exchange=eri_e)
314 ! potential
315 CALL atom_ppint_setup(ae_int, ae_basis, potential=ae_pot)
316 ! relativistic correction terms
317 CALL atom_relint_setup(ae_int, ae_basis, reltyp, zcore=real(zval, dp))
318 !
319 CALL set_atom(atom_refs(in, im)%atom, basis=ae_basis, integrals=ae_int, potential=ae_pot)
320 state%maxn_calc(:) = min(state%maxn_calc(:), ae_basis%nbas(:))
321 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
322
323 CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
324 exchange_integral_type=do_erie)
325 CALL set_atom(atom_refs(in, im)%atom, coulomb_integral_type=do_eric, &
326 exchange_integral_type=do_erie)
327 atom_info(in, im)%atom%hfx_pot%do_gh = do_gh
328 atom_info(in, im)%atom%hfx_pot%nr_gh = nr_gh
329 atom_refs(in, im)%atom%hfx_pot%do_gh = do_gh
330 atom_refs(in, im)%atom%hfx_pot%nr_gh = nr_gh
331
332 CALL set_atom(atom_info(in, im)%atom, state=statepp)
333 NULLIFY (orbitals)
334 mo = maxval(statepp%maxn_calc)
335 mb = maxval(atom_info(in, im)%atom%basis%nbas)
336 CALL create_atom_orbs(orbitals, mb, mo)
337 CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
338
339 CALL set_atom(atom_refs(in, im)%atom, state=state)
340 NULLIFY (orbitals)
341 mo = maxval(state%maxn_calc)
342 mb = maxval(atom_refs(in, im)%atom%basis%nbas)
343 CALL create_atom_orbs(orbitals, mb, mo)
344 CALL set_atom(atom_refs(in, im)%atom, orbitals=orbitals)
345
346 IF (atom_consistent_method(atom_refs(in, im)%atom%method_type, atom_refs(in, im)%atom%state%multiplicity)) THEN
347 !Print method info
348 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
349 CALL atom_print_method(atom_refs(in, im)%atom, iw)
350 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
351 !Calculate the electronic structure
352 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
353 CALL calculate_atom(atom_refs(in, im)%atom, iw)
354 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
355 END IF
356 END DO
357 END DO
358
359 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
360 IF (iw > 0) THEN
361 WRITE (iw, '(/," ",79("*"))')
362 WRITE (iw, '(" ",21("*"),A,21("*"))') " Optimize Pseudopotential Parameters "
363 WRITE (iw, '(" ",79("*"))')
364 END IF
365 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
366 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
367 IF (iw > 0) THEN
368 CALL atom_print_potential(p_pot, iw)
369 END IF
370 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
371 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
372 IF (iw > 0) THEN
373 powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
374 CALL atom_fit_pseudo(atom_info, atom_refs, p_pot, iw, powell_section)
375 END IF
376 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
377 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
378 IF (iw > 0) THEN
379 CALL atom_print_potential(p_pot, iw)
380 END IF
381 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
382
383 ! clean up
384 CALL atom_int_release(ae_int)
385 CALL atom_ppint_release(ae_int)
386 CALL atom_relint_release(ae_int)
387
388 CALL atom_int_release(pp_int)
389 CALL atom_ppint_release(pp_int)
390 CALL atom_relint_release(pp_int)
391
392 CALL release_atom_basis(ae_basis)
393 CALL release_atom_basis(pp_basis)
394
395 CALL release_atom_potential(p_pot)
396 CALL release_atom_potential(ae_pot)
397
398 DO in = 1, n_rep
399 DO im = 1, n_meth
400 CALL release_atom_type(atom_info(in, im)%atom)
401 CALL release_atom_type(atom_refs(in, im)%atom)
402 END DO
403 END DO
404 DEALLOCATE (atom_info, atom_refs)
405
406 DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
407
408 CALL timestop(handle)
409
410 END SUBROUTINE atom_pseudo_opt
411
412! **************************************************************************************************
413
414END MODULE atom_pseudo
subroutine, public calculate_atom(atom, iw, noguess, converged)
General routine to perform electronic structure atomic calculations.
routines that fit parameters for /from atomic calculations
Definition atom_fit.F:11
subroutine, public atom_fit_pseudo(atom_info, atom_refs, ppot, iunit, powell_section)
...
Definition atom_fit.F:488
Calculate the atomic operator matrices.
subroutine, public atom_ppint_release(integrals)
Release memory allocated for atomic integrals (core electrons).
subroutine, public atom_int_setup(integrals, basis, potential, eri_coulomb, eri_exchange, all_nu)
Set up atomic integrals.
subroutine, public atom_relint_setup(integrals, basis, reltyp, zcore, alpha)
...
subroutine, public atom_relint_release(integrals)
Release memory allocated for atomic integrals (relativistic effects).
subroutine, public atom_ppint_setup(integrals, basis, potential)
...
subroutine, public atom_int_release(integrals)
Release memory allocated for atomic integrals (valence electrons).
Routines that print various information about an atomic kind.
Definition atom_output.F:11
subroutine, public atom_print_basis(atom_basis, iw, title)
Print atomic basis set.
subroutine, public atom_print_method(atom, iw)
Print information about the electronic structure method in use.
subroutine, public atom_print_potential(potential, iw)
Print information about the pseudo-potential.
subroutine, public atom_print_info(zval, info, iw)
Print an information string related to the atomic kind.
Definition atom_output.F:64
subroutine, public atom_pseudo_opt(atom_section)
...
Definition atom_pseudo.F:65
Define the atom type and its sub types.
Definition atom_types.F:15
subroutine, public read_atom_opt_section(optimization, opt_section)
...
subroutine, public create_atom_type(atom)
...
Definition atom_types.F:944
subroutine, public release_atom_type(atom)
...
Definition atom_types.F:968
subroutine, public release_atom_potential(potential)
...
subroutine, public init_atom_basis(basis, basis_section, zval, btyp)
Initialize the basis for the atomic code.
Definition atom_types.F:375
integer, parameter, public lmat
Definition atom_types.F:67
subroutine, public set_atom(atom, basis, state, integrals, orbitals, potential, zcore, pp_calc, do_zmp, doread, read_vxc, method_type, relativistic, coulomb_integral_type, exchange_integral_type, fmat)
...
subroutine, public init_atom_potential(potential, potential_section, zval)
...
subroutine, public release_atom_basis(basis)
...
Definition atom_types.F:910
subroutine, public create_atom_orbs(orbs, mbas, mo)
...
Some basic routines for atomic calculations.
Definition atom_utils.F:15
pure logical function, public atom_consistent_method(method, multiplicity)
Check that the atomic multiplicity is consistent with the electronic structure method.
pure integer function, dimension(0:lmat), public get_maxn_occ(occupation)
Return the maximum principal quantum number of occupied orbitals.
Definition atom_utils.F:302
subroutine, public atom_set_occupation(ostring, occupation, wfnocc, multiplicity)
Set occupation of atomic orbitals.
Definition atom_utils.F:104
pure integer function, public get_maxl_occ(occupation)
Return the maximum orbital quantum number of occupied orbitals.
Definition atom_utils.F:282
various routines to log and control the output. The idea is that decisions about where to log should ...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer function, public cp_print_key_unit_nr(logger, basis_section, print_key_path, extension, middle_name, local, log_filename, ignore_should_output, file_form, file_position, file_action, file_status, do_backup, on_file, is_new_file, mpi_io, fout)
...
subroutine, public cp_print_key_finished_output(unit_nr, logger, basis_section, print_key_path, local, ignore_should_output, on_file, mpi_io)
should be called after you finish working with a unit obtained with cp_print_key_unit_nr,...
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public do_analytic
integer, parameter, public poly_conf
objects that represent the structure of input sections and the data contained in an input section
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
Periodic Table related data definitions.
type(atom), dimension(0:nelem), public ptable
integer, parameter, public nelem
Definition of physical constants:
Definition physcon.F:68
real(kind=dp), parameter, public bohr
Definition physcon.F:147
Provides all information about a basis set.
Definition atom_types.F:78
Information on optimization procedure.
Definition atom_types.F:280
Holds atomic orbitals and energies.
Definition atom_types.F:234
Provides all information on states and occupation.
Definition atom_types.F:195
type of a logger, at the moment it contains just a print level starting at which level it should be l...