(git:374b731)
Loading...
Searching...
No Matches
pao_param_gth.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
9!> \brief Parametrization based on GTH pseudo potentials
10!> \author Ole Schuett
11! **************************************************************************************************
16 USE cell_types, ONLY: cell_type,&
17 pbc
18 USE dbcsr_api, ONLY: &
19 dbcsr_create, dbcsr_get_block_p, dbcsr_get_info, dbcsr_iterator_blocks_left, &
20 dbcsr_iterator_next_block, dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, &
21 dbcsr_p_type, dbcsr_release, dbcsr_reserve_all_blocks, dbcsr_reserve_diag_blocks, &
22 dbcsr_set, dbcsr_type
25 USE kinds, ONLY: dp
26 USE machine, ONLY: m_flush
33 USE pao_types, ONLY: pao_env_type
37 USE qs_kind_types, ONLY: get_qs_kind,&
40#include "./base/base_uses.f90"
41
42 IMPLICIT NONE
43
44 PRIVATE
45
48
49CONTAINS
50
51! **************************************************************************************************
52!> \brief Initialize the linear potential parametrization
53!> \param pao ...
54!> \param qs_env ...
55! **************************************************************************************************
56 SUBROUTINE pao_param_init_gth(pao, qs_env)
57 TYPE(pao_env_type), POINTER :: pao
58 TYPE(qs_environment_type), POINTER :: qs_env
59
60 CHARACTER(len=*), PARAMETER :: routinen = 'pao_param_init_gth'
61
62 INTEGER :: acol, arow, handle, iatom, idx, ikind, &
63 iterm, jatom, maxl, n, natoms
64 INTEGER, DIMENSION(:), POINTER :: blk_sizes_pri, col_blk_size, nterms, &
65 row_blk_size
66 REAL(dp), DIMENSION(:, :), POINTER :: block_v_term, vec_v_terms
67 TYPE(dbcsr_iterator_type) :: iter
68 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
69 TYPE(pao_potential_type), DIMENSION(:), POINTER :: pao_potentials
70 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
71 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
72
73 CALL timeset(routinen, handle)
74
75 CALL get_qs_env(qs_env, &
76 natom=natoms, &
77 matrix_s=matrix_s, &
78 qs_kind_set=qs_kind_set, &
79 particle_set=particle_set)
80
81 maxl = 0
82 ALLOCATE (row_blk_size(natoms), col_blk_size(natoms), nterms(natoms))
83 DO iatom = 1, natoms
84 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
85 CALL pao_param_count_gth(qs_env, ikind, nterms(iatom))
86 CALL get_qs_kind(qs_kind_set(ikind), pao_potentials=pao_potentials)
87 cpassert(SIZE(pao_potentials) == 1)
88 maxl = max(maxl, pao_potentials(1)%maxl)
89 END DO
90 CALL init_orbital_pointers(maxl) ! needs to be called before gth_calc_term()
91
92 ! allocate matrix_V_terms
93 CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=blk_sizes_pri)
94 col_blk_size = sum(nterms)
95 row_blk_size = blk_sizes_pri**2
96 CALL dbcsr_create(pao%matrix_V_terms, &
97 name="PAO matrix_V_terms", &
98 dist=pao%diag_distribution, &
99 matrix_type="N", &
100 row_blk_size=row_blk_size, &
101 col_blk_size=col_blk_size)
102 CALL dbcsr_reserve_diag_blocks(pao%matrix_V_terms)
103 CALL dbcsr_set(pao%matrix_V_terms, 0.0_dp)
104
105 ! calculate and store poential terms
106!$OMP PARALLEL DEFAULT(NONE) SHARED(pao,qs_env,blk_sizes_pri,natoms,nterms) &
107!$OMP PRIVATE(iter,arow,acol,iatom,jatom,N,idx,vec_V_terms,block_V_term)
108 CALL dbcsr_iterator_start(iter, pao%matrix_V_terms)
109 DO WHILE (dbcsr_iterator_blocks_left(iter))
110 CALL dbcsr_iterator_next_block(iter, arow, acol, vec_v_terms)
111 iatom = arow; cpassert(arow == acol)
112 n = blk_sizes_pri(iatom)
113 DO jatom = 1, natoms
114 IF (jatom == iatom) cycle ! waste some storage to simplify things later
115 DO iterm = 1, nterms(jatom)
116 idx = sum(nterms(1:jatom - 1)) + iterm
117 block_v_term(1:n, 1:n) => vec_v_terms(:, idx) ! map column into matrix
118 CALL gth_calc_term(qs_env, block_v_term, iatom, jatom, iterm)
119 END DO
120 END DO
121 END DO
122 CALL dbcsr_iterator_stop(iter)
123!$OMP END PARALLEL
124
125 IF (pao%precondition) &
126 CALL pao_param_gth_preconditioner(pao, qs_env, nterms)
127
128 DEALLOCATE (row_blk_size, col_blk_size, nterms)
129 CALL timestop(handle)
130 END SUBROUTINE pao_param_init_gth
131
132! **************************************************************************************************
133!> \brief Finalize the GTH potential parametrization
134!> \param pao ...
135! **************************************************************************************************
137 TYPE(pao_env_type), POINTER :: pao
138
139 CALL dbcsr_release(pao%matrix_V_terms)
140 IF (pao%precondition) THEN
141 CALL dbcsr_release(pao%matrix_precon)
142 CALL dbcsr_release(pao%matrix_precon_inv)
143 END IF
144
145 END SUBROUTINE pao_param_finalize_gth
146
147! **************************************************************************************************
148!> \brief Builds the preconditioner matrix_precon and matrix_precon_inv
149!> \param pao ...
150!> \param qs_env ...
151!> \param nterms ...
152! **************************************************************************************************
153 SUBROUTINE pao_param_gth_preconditioner(pao, qs_env, nterms)
154 TYPE(pao_env_type), POINTER :: pao
155 TYPE(qs_environment_type), POINTER :: qs_env
156 INTEGER, DIMENSION(:), POINTER :: nterms
157
158 CHARACTER(len=*), PARAMETER :: routinen = 'pao_param_gth_preconditioner'
159
160 INTEGER :: acol, arow, group_handle, handle, i, &
161 iatom, ioffset, j, jatom, joffset, m, &
162 n, natoms
163 LOGICAL :: arnoldi_converged, converged, found
164 REAL(dp) :: eval_max, eval_min
165 REAL(dp), DIMENSION(:, :), POINTER :: block, block_overlap, block_v_term
166 TYPE(dbcsr_iterator_type) :: iter
167 TYPE(dbcsr_type) :: matrix_gth_overlap
168 TYPE(ls_scf_env_type), POINTER :: ls_scf_env
169 TYPE(mp_comm_type) :: group
170
171 CALL timeset(routinen, handle)
172
173 CALL get_qs_env(qs_env, ls_scf_env=ls_scf_env)
174 CALL dbcsr_get_info(pao%matrix_V_terms, group=group_handle)
175 CALL group%set_handle(group_handle)
176 natoms = SIZE(nterms)
177
178 CALL dbcsr_create(matrix_gth_overlap, &
179 template=pao%matrix_V_terms, &
180 matrix_type="N", &
181 row_blk_size=nterms, &
182 col_blk_size=nterms)
183 CALL dbcsr_reserve_all_blocks(matrix_gth_overlap)
184 CALL dbcsr_set(matrix_gth_overlap, 0.0_dp)
185
186 DO iatom = 1, natoms
187 DO jatom = 1, natoms
188 ioffset = sum(nterms(1:iatom - 1))
189 joffset = sum(nterms(1:jatom - 1))
190 n = nterms(iatom)
191 m = nterms(jatom)
192
193 ALLOCATE (block(n, m))
194 block = 0.0_dp
195
196 ! can't use OpenMP here block is a pointer and hence REDUCTION(+:block) does work
197 CALL dbcsr_iterator_start(iter, pao%matrix_V_terms)
198 DO WHILE (dbcsr_iterator_blocks_left(iter))
199 CALL dbcsr_iterator_next_block(iter, arow, acol, block_v_term)
200 cpassert(arow == acol)
201 DO i = 1, n
202 DO j = 1, m
203 block(i, j) = block(i, j) + sum(block_v_term(:, ioffset + i)*block_v_term(:, joffset + j))
204 END DO
205 END DO
206 END DO
207 CALL dbcsr_iterator_stop(iter)
208
209 CALL group%sum(block)
210
211 CALL dbcsr_get_block_p(matrix=matrix_gth_overlap, row=iatom, col=jatom, block=block_overlap, found=found)
212 IF (ASSOCIATED(block_overlap)) &
213 block_overlap = block
214
215 DEALLOCATE (block)
216 END DO
217 END DO
218
219 !TODO: good setting for arnoldi?
220 CALL arnoldi_extremal(matrix_gth_overlap, eval_max, eval_min, max_iter=100, &
221 threshold=1e-2_dp, converged=arnoldi_converged)
222 IF (pao%iw > 0) WRITE (pao%iw, *) "PAO| GTH-preconditioner converged, min, max, max/min:", &
223 arnoldi_converged, eval_min, eval_max, eval_max/eval_min
224
225 CALL dbcsr_create(pao%matrix_precon, template=matrix_gth_overlap)
226 CALL dbcsr_create(pao%matrix_precon_inv, template=matrix_gth_overlap)
227
228 CALL matrix_sqrt_newton_schulz(pao%matrix_precon_inv, pao%matrix_precon, matrix_gth_overlap, &
229 threshold=ls_scf_env%eps_filter, &
230 order=ls_scf_env%s_sqrt_order, &
231 max_iter_lanczos=ls_scf_env%max_iter_lanczos, &
232 eps_lanczos=ls_scf_env%eps_lanczos, &
233 converged=converged)
234 CALL dbcsr_release(matrix_gth_overlap)
235
236 IF (.NOT. converged) &
237 cpabort("PAO: Sqrt of GTH-preconditioner did not converge.")
238
239 CALL timestop(handle)
240 END SUBROUTINE pao_param_gth_preconditioner
241
242! **************************************************************************************************
243!> \brief Takes current matrix_X and calculates the matrices A and B.
244!> \param pao ...
245!> \param qs_env ...
246!> \param ls_scf_env ...
247!> \param gradient ...
248!> \param penalty ...
249! **************************************************************************************************
250 SUBROUTINE pao_calc_ab_gth(pao, qs_env, ls_scf_env, gradient, penalty)
251 TYPE(pao_env_type), POINTER :: pao
252 TYPE(qs_environment_type), POINTER :: qs_env
253 TYPE(ls_scf_env_type), TARGET :: ls_scf_env
254 LOGICAL, INTENT(IN) :: gradient
255 REAL(dp), INTENT(INOUT), OPTIONAL :: penalty
256
257 CHARACTER(len=*), PARAMETER :: routinen = 'pao_calc_AB_gth'
258
259 INTEGER :: handle
260 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
261 TYPE(dbcsr_type) :: matrix_m, matrix_u
262
263 CALL timeset(routinen, handle)
264 CALL get_qs_env(qs_env, matrix_s=matrix_s)
265 CALL dbcsr_create(matrix_u, matrix_type="N", dist=pao%diag_distribution, template=matrix_s(1)%matrix)
266 CALL dbcsr_reserve_diag_blocks(matrix_u)
267
268 !TODO: move this condition into pao_calc_U, use matrix_N as template
269 IF (gradient) THEN
270 CALL pao_calc_grad_lnv_wrt_u(qs_env, ls_scf_env, matrix_m)
271 CALL pao_calc_u_gth(pao, matrix_u, matrix_m, pao%matrix_G, penalty)
272 CALL dbcsr_release(matrix_m)
273 ELSE
274 CALL pao_calc_u_gth(pao, matrix_u, penalty=penalty)
275 END IF
276
277 CALL pao_calc_ab_from_u(pao, qs_env, ls_scf_env, matrix_u)
278 CALL dbcsr_release(matrix_u)
279 CALL timestop(handle)
280 END SUBROUTINE pao_calc_ab_gth
281
282! **************************************************************************************************
283!> \brief Calculate new matrix U and optinally its gradient G
284!> \param pao ...
285!> \param matrix_U ...
286!> \param matrix_M1 ...
287!> \param matrix_G ...
288!> \param penalty ...
289! **************************************************************************************************
290 SUBROUTINE pao_calc_u_gth(pao, matrix_U, matrix_M1, matrix_G, penalty)
291 TYPE(pao_env_type), POINTER :: pao
292 TYPE(dbcsr_type) :: matrix_u
293 TYPE(dbcsr_type), OPTIONAL :: matrix_m1, matrix_g
294 REAL(dp), INTENT(INOUT), OPTIONAL :: penalty
295
296 CHARACTER(len=*), PARAMETER :: routinen = 'pao_calc_U_gth'
297
298 INTEGER :: acol, arow, group_handle, handle, iatom, &
299 idx, iterm, n, natoms
300 INTEGER, DIMENSION(:), POINTER :: nterms
301 LOGICAL :: found
302 REAL(dp), ALLOCATABLE, DIMENSION(:) :: gaps
303 REAL(dp), DIMENSION(:), POINTER :: world_g, world_x
304 REAL(dp), DIMENSION(:, :), POINTER :: block_g, block_m1, block_m2, block_u, &
305 block_v, block_v_term, block_x, &
306 vec_v_terms
307 TYPE(dbcsr_iterator_type) :: iter
308 TYPE(mp_comm_type) :: group
309
310 CALL timeset(routinen, handle)
311
312 CALL dbcsr_get_info(pao%matrix_X, row_blk_size=nterms, group=group_handle)
313 CALL group%set_handle(group_handle)
314 natoms = SIZE(nterms)
315 ALLOCATE (gaps(natoms))
316 gaps(:) = huge(dp)
317
318 ! allocate arrays for world-view
319 ALLOCATE (world_x(sum(nterms)), world_g(sum(nterms)))
320 world_x = 0.0_dp; world_g = 0.0_dp
321
322 ! collect world_X from atomic blocks
323 CALL dbcsr_iterator_start(iter, pao%matrix_X)
324 DO WHILE (dbcsr_iterator_blocks_left(iter))
325 CALL dbcsr_iterator_next_block(iter, arow, acol, block_x)
326 iatom = arow; cpassert(arow == acol)
327 idx = sum(nterms(1:iatom - 1))
328 world_x(idx + 1:idx + nterms(iatom)) = block_x(:, 1)
329 END DO
330 CALL dbcsr_iterator_stop(iter)
331 CALL group%sum(world_x) ! sync world view across MPI ranks
332
333 ! loop over atoms
334 CALL dbcsr_iterator_start(iter, matrix_u)
335 DO WHILE (dbcsr_iterator_blocks_left(iter))
336 CALL dbcsr_iterator_next_block(iter, arow, acol, block_u)
337 iatom = arow; cpassert(arow == acol)
338 n = SIZE(block_u, 1)
339 CALL dbcsr_get_block_p(matrix=pao%matrix_V_terms, row=iatom, col=iatom, block=vec_v_terms, found=found)
340 cpassert(ASSOCIATED(vec_v_terms))
341
342 ! calculate potential V of i'th atom
343 ALLOCATE (block_v(n, n))
344 block_v = 0.0_dp
345 DO iterm = 1, SIZE(world_x)
346 block_v_term(1:n, 1:n) => vec_v_terms(:, iterm) ! map column into matrix
347 block_v = block_v + world_x(iterm)*block_v_term
348 END DO
349
350 ! calculate gradient block of i'th atom
351 IF (.NOT. PRESENT(matrix_g)) THEN
352 CALL pao_calc_u_block_fock(pao, iatom=iatom, penalty=penalty, v=block_v, u=block_u, gap=gaps(iatom))
353
354 ELSE ! TURNING POINT (if calc grad) ------------------------------------
355 cpassert(PRESENT(matrix_m1))
356 CALL dbcsr_get_block_p(matrix=matrix_m1, row=iatom, col=iatom, block=block_m1, found=found)
357 ALLOCATE (block_m2(n, n))
358 CALL pao_calc_u_block_fock(pao, iatom=iatom, penalty=penalty, v=block_v, u=block_u, &
359 m1=block_m1, g=block_m2, gap=gaps(iatom))
360 DO iterm = 1, SIZE(world_g)
361 block_v_term(1:n, 1:n) => vec_v_terms(:, iterm) ! map column into matrix
362 world_g(iterm) = world_g(iterm) + sum(block_v_term*block_m2)
363 END DO
364 DEALLOCATE (block_m2)
365 END IF
366 DEALLOCATE (block_v)
367 END DO
368 CALL dbcsr_iterator_stop(iter)
369
370 ! distribute world_G across atomic blocks
371 IF (PRESENT(matrix_g)) THEN
372 CALL group%sum(world_g) ! sync world view across MPI ranks
373 CALL dbcsr_iterator_start(iter, matrix_g)
374 DO WHILE (dbcsr_iterator_blocks_left(iter))
375 CALL dbcsr_iterator_next_block(iter, arow, acol, block_g)
376 iatom = arow; cpassert(arow == acol)
377 idx = sum(nterms(1:iatom - 1))
378 block_g(:, 1) = world_g(idx + 1:idx + nterms(iatom))
379 END DO
380 CALL dbcsr_iterator_stop(iter)
381 END IF
382
383 DEALLOCATE (world_x, world_g)
384
385 ! sum penalty energies across ranks
386 IF (PRESENT(penalty)) &
387 CALL group%sum(penalty)
388
389 ! print homo-lumo gap encountered by fock-layer
390 CALL group%min(gaps)
391 IF (pao%iw_gap > 0) THEN
392 DO iatom = 1, natoms
393 WRITE (pao%iw_gap, *) "PAO| atom:", iatom, " fock gap:", gaps(iatom)
394 END DO
395 CALL m_flush(pao%iw_gap)
396 END IF
397
398 ! one-line summary
399 IF (pao%iw > 0) THEN
400 WRITE (pao%iw, "(A,E20.10,A,T71,I10)") " PAO| min_gap:", minval(gaps), " for atom:", minloc(gaps)
401 END IF
402
403 DEALLOCATE (gaps)
404 CALL timestop(handle)
405
406 END SUBROUTINE pao_calc_u_gth
407
408! **************************************************************************************************
409!> \brief Returns the number of parameters for given atomic kind
410!> \param qs_env ...
411!> \param ikind ...
412!> \param nparams ...
413! **************************************************************************************************
414 SUBROUTINE pao_param_count_gth(qs_env, ikind, nparams)
415 TYPE(qs_environment_type), POINTER :: qs_env
416 INTEGER, INTENT(IN) :: ikind
417 INTEGER, INTENT(OUT) :: nparams
418
419 INTEGER :: max_projector, maxl, ncombis
420 TYPE(pao_potential_type), DIMENSION(:), POINTER :: pao_potentials
421 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
422
423 CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
424 CALL get_qs_kind(qs_kind_set(ikind), pao_potentials=pao_potentials)
425
426 IF (SIZE(pao_potentials) /= 1) &
427 cpabort("GTH parametrization requires exactly one PAO_POTENTIAL section per KIND")
428
429 max_projector = pao_potentials(1)%max_projector
430 maxl = pao_potentials(1)%maxl
431
432 IF (maxl < 0) &
433 cpabort("GTH parametrization requires non-negative PAO_POTENTIAL%MAXL")
434
435 IF (max_projector < 0) &
436 cpabort("GTH parametrization requires non-negative PAO_POTENTIAL%MAX_PROJECTOR")
437
438 IF (mod(maxl, 2) /= 0) &
439 cpabort("GTH parametrization requires even-numbered PAO_POTENTIAL%MAXL")
440
441 ncombis = (max_projector + 1)*(max_projector + 2)/2
442 nparams = ncombis*(maxl/2 + 1)
443
444 END SUBROUTINE pao_param_count_gth
445
446! **************************************************************************************************
447!> \brief Fills the given block_V with the requested potential term
448!> \param qs_env ...
449!> \param block_V ...
450!> \param iatom ...
451!> \param jatom ...
452!> \param kterm ...
453! **************************************************************************************************
454 SUBROUTINE gth_calc_term(qs_env, block_V, iatom, jatom, kterm)
455 TYPE(qs_environment_type), POINTER :: qs_env
456 REAL(dp), DIMENSION(:, :), INTENT(OUT) :: block_v
457 INTEGER, INTENT(IN) :: iatom, jatom, kterm
458
459 INTEGER :: c, ikind, jkind, lpot, max_l, min_l, &
460 pot_max_projector, pot_maxl
461 REAL(dp), DIMENSION(3) :: ra, rab, rb
462 REAL(kind=dp) :: pot_beta
463 TYPE(cell_type), POINTER :: cell
464 TYPE(gto_basis_set_type), POINTER :: basis_set
465 TYPE(pao_potential_type), DIMENSION(:), POINTER :: pao_potentials
466 TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
467 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
468
469 CALL get_qs_env(qs_env, &
470 cell=cell, &
471 particle_set=particle_set, &
472 qs_kind_set=qs_kind_set)
473
474 ! get GTH-settings from remote atom
475 CALL get_atomic_kind(particle_set(jatom)%atomic_kind, kind_number=jkind)
476 CALL get_qs_kind(qs_kind_set(jkind), pao_potentials=pao_potentials)
477 cpassert(SIZE(pao_potentials) == 1)
478 pot_max_projector = pao_potentials(1)%max_projector
479 pot_maxl = pao_potentials(1)%maxl
480 pot_beta = pao_potentials(1)%beta
481
482 c = 0
483 outer: DO lpot = 0, pot_maxl, 2
484 DO max_l = 0, pot_max_projector
485 DO min_l = 0, max_l
486 c = c + 1
487 IF (c == kterm) EXIT outer
488 END DO
489 END DO
490 END DO outer
491
492 ! get basis-set of central atom
493 CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
494 CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis_set)
495
496 ra = particle_set(iatom)%r
497 rb = particle_set(jatom)%r
498 rab = pbc(ra, rb, cell)
499
500 block_v = 0.0_dp
501 CALL pao_calc_gaussian(basis_set, block_v, rab=rab, lpot=lpot, &
502 min_l=min_l, max_l=max_l, beta=pot_beta, weight=1.0_dp)
503
504 END SUBROUTINE gth_calc_term
505
506! **************************************************************************************************
507!> \brief Calculate initial guess for matrix_X
508!> \param pao ...
509! **************************************************************************************************
511 TYPE(pao_env_type), POINTER :: pao
512
513 INTEGER :: acol, arow
514 REAL(dp), DIMENSION(:, :), POINTER :: block_x
515 TYPE(dbcsr_iterator_type) :: iter
516
517!$OMP PARALLEL DEFAULT(NONE) SHARED(pao) &
518!$OMP PRIVATE(iter,arow,acol,block_X)
519 CALL dbcsr_iterator_start(iter, pao%matrix_X)
520 DO WHILE (dbcsr_iterator_blocks_left(iter))
521 CALL dbcsr_iterator_next_block(iter, arow, acol, block_x)
522 cpassert(arow == acol)
523 cpassert(SIZE(block_x, 2) == 1)
524
525 ! a simplistic guess, which at least makes the atom visible to others
526 block_x = 0.0_dp
527 block_x(1, 1) = 0.01_dp
528 END DO
529 CALL dbcsr_iterator_stop(iter)
530!$OMP END PARALLEL
531
532 END SUBROUTINE pao_param_initguess_gth
533
534END MODULE pao_param_gth
static GRID_HOST_DEVICE int idx(const orbital a)
Return coset index of given orbital angular momentum.
arnoldi iteration using dbcsr
Definition arnoldi_api.F:15
subroutine, public arnoldi_extremal(matrix_a, max_ev, min_ev, converged, threshold, max_iter)
simple wrapper to estimate extremal eigenvalues with arnoldi, using the old lanczos interface this hi...
Define the atomic kind types and their sub types.
subroutine, public get_atomic_kind(atomic_kind, fist_potential, element_symbol, name, mass, kind_number, natom, atom_list, rcov, rvdw, z, qeff, apol, cpol, mm_radius, shell, shell_active, damping)
Get attributes of an atomic kind.
Handles all functions related to the CELL.
Definition cell_types.F:15
Types needed for a linear scaling quickstep SCF run based on the density matrix.
Routines useful for iterative matrix calculations.
subroutine, public matrix_sqrt_newton_schulz(matrix_sqrt, matrix_sqrt_inv, matrix, threshold, order, eps_lanczos, max_iter_lanczos, symmetrize, converged)
compute the sqrt of a matrix via the sign function and the corresponding Newton-Schulz iterations the...
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
Machine interface based on Fortran 2003 and POSIX.
Definition machine.F:17
subroutine, public m_flush(lunit)
flushes units if the &GLOBAL flag is set accordingly
Definition machine.F:106
Interface to the message passing library MPI.
Provides Cartesian and spherical orbital pointers and indices.
subroutine, public init_orbital_pointers(maxl)
Initialize or update the orbital pointers.
Common framework for using eigenvectors of a Fock matrix as PAO basis.
subroutine, public pao_calc_u_block_fock(pao, iatom, v, u, penalty, gap, evals, m1, g)
Calculate new matrix U and optinally its gradient G.
Parametrization based on GTH pseudo potentials.
subroutine, public pao_calc_ab_gth(pao, qs_env, ls_scf_env, gradient, penalty)
Takes current matrix_X and calculates the matrices A and B.
subroutine, public pao_param_initguess_gth(pao)
Calculate initial guess for matrix_X.
subroutine, public pao_param_count_gth(qs_env, ikind, nparams)
Returns the number of parameters for given atomic kind.
subroutine, public pao_param_init_gth(pao, qs_env)
Initialize the linear potential parametrization.
subroutine, public pao_param_finalize_gth(pao)
Finalize the GTH potential parametrization.
Common routines for PAO parametrizations.
subroutine, public pao_calc_grad_lnv_wrt_u(qs_env, ls_scf_env, matrix_m_diag)
Helper routine, calculates partial derivative dE/dU.
subroutine, public pao_calc_ab_from_u(pao, qs_env, ls_scf_env, matrix_u_diag)
Takes current matrix_X and calculates the matrices A and B.
Factory routines for potentials used e.g. by pao_param_exp and pao_ml.
subroutine, public pao_calc_gaussian(basis_set, block_v, block_d, rab, lpot, beta, weight, min_shell, max_shell, min_l, max_l)
Calculates potential term of the form r**lpot * Exp(-beta*r**2) One needs to call init_orbital_pointe...
Types used by the PAO machinery.
Definition pao_types.F:12
Define the data structure for the particle information.
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, rhs)
Get the QUICKSTEP environment.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_r3d_rs_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
Type defining parameters related to the simulation cell.
Definition cell_types.F:55
Holds information about a PAO potential.
Provides all information about a quickstep kind.