(git:374b731)
Loading...
Searching...
No Matches
pao_param_equi.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
8! **************************************************************************************************
9!> \brief Equivariant parametrization
10!> \author Ole Schuett
11! **************************************************************************************************
14 USE dbcsr_api, ONLY: &
15 dbcsr_complete_redistribute, dbcsr_create, dbcsr_distribution_type, dbcsr_get_block_p, &
16 dbcsr_get_info, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
17 dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, &
18 dbcsr_release, dbcsr_reserve_diag_blocks, dbcsr_type
21 USE kinds, ONLY: dp
22 USE mathlib, ONLY: diamat_all
26 USE pao_types, ONLY: pao_env_type
29 USE qs_kind_types, ONLY: get_qs_kind,&
31#include "./base/base_uses.f90"
32
33 IMPLICIT NONE
34
35 PRIVATE
36
37 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'pao_param_equi'
38
41
42CONTAINS
43
44! **************************************************************************************************
45!> \brief Initialize equivariant parametrization
46!> \param pao ...
47! **************************************************************************************************
48 SUBROUTINE pao_param_init_equi(pao)
49 TYPE(pao_env_type), POINTER :: pao
50
51 IF (pao%precondition) &
52 cpabort("PAO preconditioning not supported for selected parametrization.")
53
54 END SUBROUTINE pao_param_init_equi
55
56! **************************************************************************************************
57!> \brief Finalize equivariant parametrization
58! **************************************************************************************************
60
61 ! Nothing to do.
62
63 END SUBROUTINE pao_param_finalize_equi
64
65! **************************************************************************************************
66!> \brief Returns the number of parameters for given atomic kind
67!> \param qs_env ...
68!> \param ikind ...
69!> \param nparams ...
70! **************************************************************************************************
71 SUBROUTINE pao_param_count_equi(qs_env, ikind, nparams)
72 TYPE(qs_environment_type), POINTER :: qs_env
73 INTEGER, INTENT(IN) :: ikind
74 INTEGER, INTENT(OUT) :: nparams
75
76 INTEGER :: pao_basis_size, pri_basis_size
77 TYPE(gto_basis_set_type), POINTER :: basis_set
78 TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
79
80 CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
81 CALL get_qs_kind(qs_kind_set(ikind), &
82 basis_set=basis_set, &
83 pao_basis_size=pao_basis_size)
84 pri_basis_size = basis_set%nsgf
85
86 nparams = pao_basis_size*pri_basis_size
87
88 END SUBROUTINE pao_param_count_equi
89
90! **************************************************************************************************
91!> \brief Fills matrix_X with an initial guess
92!> \param pao ...
93!> \param qs_env ...
94! **************************************************************************************************
95 SUBROUTINE pao_param_initguess_equi(pao, qs_env)
96 TYPE(pao_env_type), POINTER :: pao
97 TYPE(qs_environment_type), POINTER :: qs_env
98
99 CHARACTER(len=*), PARAMETER :: routinen = 'pao_param_initguess_equi'
100
101 INTEGER :: acol, arow, handle, i, iatom, m, n
102 INTEGER, DIMENSION(:), POINTER :: blk_sizes_pao, blk_sizes_pri
103 LOGICAL :: found
104 REAL(dp), DIMENSION(:), POINTER :: h_evals
105 REAL(dp), DIMENSION(:, :), POINTER :: a, block_h0, block_n, block_n_inv, &
106 block_x, h, h_evecs, v0
107 TYPE(dbcsr_iterator_type) :: iter
108
109 CALL timeset(routinen, handle)
110
111 CALL dbcsr_get_info(pao%matrix_Y, row_blk_size=blk_sizes_pri, col_blk_size=blk_sizes_pao)
112
113!$OMP PARALLEL DEFAULT(NONE) SHARED(pao,qs_env,blk_sizes_pri,blk_sizes_pao) &
114!$OMP PRIVATE(iter,arow,acol,iatom,n,m,i,found) &
115!$OMP PRIVATE(block_X,block_H0,block_N,block_N_inv,A,H,H_evecs,H_evals,V0)
116 CALL dbcsr_iterator_start(iter, pao%matrix_X)
117 DO WHILE (dbcsr_iterator_blocks_left(iter))
118 CALL dbcsr_iterator_next_block(iter, arow, acol, block_x)
119 iatom = arow; cpassert(arow == acol)
120
121 CALL dbcsr_get_block_p(matrix=pao%matrix_H0, row=iatom, col=iatom, block=block_h0, found=found)
122 CALL dbcsr_get_block_p(matrix=pao%matrix_N_diag, row=iatom, col=iatom, block=block_n, found=found)
123 CALL dbcsr_get_block_p(matrix=pao%matrix_N_inv_diag, row=iatom, col=iatom, block=block_n_inv, found=found)
124 cpassert(ASSOCIATED(block_h0) .AND. ASSOCIATED(block_n) .AND. ASSOCIATED(block_n_inv))
125
126 n = blk_sizes_pri(iatom) ! size of primary basis
127 m = blk_sizes_pao(iatom) ! size of pao basis
128
129 ALLOCATE (v0(n, n))
130 CALL pao_guess_initial_potential(qs_env, iatom, v0)
131
132 ! construct H
133 ALLOCATE (h(n, n))
134 h = matmul(matmul(block_n, block_h0 + v0), block_n) ! transform into orthonormal basis
135
136 ! diagonalize H
137 ALLOCATE (h_evecs(n, n), h_evals(n))
138 h_evecs = h
139 CALL diamat_all(h_evecs, h_evals)
140
141 ! use first m eigenvectors as initial guess
142 ALLOCATE (a(n, m))
143 a = matmul(block_n_inv, h_evecs(:, 1:m))
144
145 ! normalize vectors
146 DO i = 1, m
147 a(:, i) = a(:, i)/norm2(a(:, i))
148 END DO
149
150 block_x = reshape(a, (/n*m, 1/))
151 DEALLOCATE (h, v0, a, h_evecs, h_evals)
152
153 END DO
154 CALL dbcsr_iterator_stop(iter)
155!$OMP END PARALLEL
156
157 CALL timestop(handle)
158
159 END SUBROUTINE pao_param_initguess_equi
160
161! **************************************************************************************************
162!> \brief Takes current matrix_X and calculates the matrices A and B.
163!> \param pao ...
164!> \param qs_env ...
165!> \param ls_scf_env ...
166!> \param gradient ...
167!> \param penalty ...
168! **************************************************************************************************
169 SUBROUTINE pao_calc_ab_equi(pao, qs_env, ls_scf_env, gradient, penalty)
170 TYPE(pao_env_type), POINTER :: pao
171 TYPE(qs_environment_type), POINTER :: qs_env
172 TYPE(ls_scf_env_type), TARGET :: ls_scf_env
173 LOGICAL, INTENT(IN) :: gradient
174 REAL(dp), INTENT(INOUT), OPTIONAL :: penalty
175
176 CHARACTER(len=*), PARAMETER :: routinen = 'pao_calc_AB_equi'
177
178 INTEGER :: acol, arow, group_handle, handle, i, &
179 iatom, j, k, m, n
180 LOGICAL :: found
181 REAL(dp) :: denom, w
182 REAL(dp), DIMENSION(:), POINTER :: anna_evals
183 REAL(dp), DIMENSION(:, :), POINTER :: anna, anna_evecs, anna_inv, block_a, &
184 block_b, block_g, block_ma, block_mb, &
185 block_n, block_x, d, g, m1, m2, m3, &
186 m4, m5, nn
187 TYPE(dbcsr_distribution_type) :: main_dist
188 TYPE(dbcsr_iterator_type) :: iter
189 TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
190 TYPE(dbcsr_type) :: matrix_g_nondiag, matrix_ma, matrix_mb, &
191 matrix_x_nondiag
192 TYPE(ls_mstruct_type), POINTER :: ls_mstruct
193 TYPE(mp_comm_type) :: group
194
195 CALL timeset(routinen, handle)
196 ls_mstruct => ls_scf_env%ls_mstruct
197
198 IF (gradient) THEN
199 CALL pao_calc_grad_lnv_wrt_ab(qs_env, ls_scf_env, matrix_ma, matrix_mb)
200 END IF
201
202 ! Redistribute matrix_X from diag_distribution to distribution of matrix_s.
203 CALL get_qs_env(qs_env, matrix_s=matrix_s)
204 CALL dbcsr_get_info(matrix=matrix_s(1)%matrix, distribution=main_dist)
205 CALL dbcsr_create(matrix_x_nondiag, &
206 name="PAO matrix_X_nondiag", &
207 dist=main_dist, &
208 template=pao%matrix_X)
209 CALL dbcsr_reserve_diag_blocks(matrix_x_nondiag)
210 CALL dbcsr_complete_redistribute(pao%matrix_X, matrix_x_nondiag)
211
212 ! Compuation of matrix_G uses distr. of matrix_s, afterwards we redistribute to diag_distribution.
213 IF (gradient) THEN
214 CALL dbcsr_create(matrix_g_nondiag, &
215 name="PAO matrix_G_nondiag", &
216 dist=main_dist, &
217 template=pao%matrix_G)
218 CALL dbcsr_reserve_diag_blocks(matrix_g_nondiag)
219 END IF
220
221!$OMP PARALLEL DEFAULT(NONE) &
222!$OMP SHARED(pao,ls_mstruct,matrix_X_nondiag,matrix_G_nondiag,matrix_Ma,matrix_Mb,gradient,penalty) &
223!$OMP PRIVATE(iter,arow,acol,iatom,found,n,m,w,i,j,k,denom) &
224!$OMP PRIVATE(NN,ANNA,ANNA_evals,ANNA_evecs,ANNA_inv,D,G,M1,M2,M3,M4,M5) &
225!$OMP PRIVATE(block_X,block_A,block_B,block_N,block_Ma, block_Mb, block_G)
226 CALL dbcsr_iterator_start(iter, matrix_x_nondiag)
227 DO WHILE (dbcsr_iterator_blocks_left(iter))
228 CALL dbcsr_iterator_next_block(iter, arow, acol, block_x)
229 iatom = arow; cpassert(arow == acol)
230 CALL dbcsr_get_block_p(matrix=ls_mstruct%matrix_A, row=iatom, col=iatom, block=block_a, found=found)
231 cpassert(ASSOCIATED(block_a))
232 CALL dbcsr_get_block_p(matrix=ls_mstruct%matrix_B, row=iatom, col=iatom, block=block_b, found=found)
233 cpassert(ASSOCIATED(block_b))
234 CALL dbcsr_get_block_p(matrix=pao%matrix_N, row=iatom, col=iatom, block=block_n, found=found)
235 cpassert(ASSOCIATED(block_n))
236
237 n = SIZE(block_a, 1) ! size of primary basis
238 m = SIZE(block_a, 2) ! size of pao basis
239 block_a = reshape(block_x, (/n, m/))
240
241 ! restrain pao basis vectors to unit norm
242 IF (PRESENT(penalty)) THEN
243 DO i = 1, m
244 w = 1.0_dp - sum(block_a(:, i)**2)
245 penalty = penalty + pao%penalty_strength*w**2
246 END DO
247 END IF
248
249 ALLOCATE (nn(n, n), anna(m, m))
250 nn = matmul(block_n, block_n) ! it's actually S^{-1}
251 anna = matmul(matmul(transpose(block_a), nn), block_a)
252
253 ! diagonalize ANNA
254 ALLOCATE (anna_evecs(m, m), anna_evals(m))
255 anna_evecs(:, :) = anna
256 CALL diamat_all(anna_evecs, anna_evals)
257 IF (minval(abs(anna_evals)) < 1e-10_dp) cpabort("PAO basis singualar.")
258
259 ! build ANNA_inv
260 ALLOCATE (anna_inv(m, m))
261 anna_inv(:, :) = 0.0_dp
262 DO k = 1, m
263 w = 1.0_dp/anna_evals(k)
264 DO i = 1, m
265 DO j = 1, m
266 anna_inv(i, j) = anna_inv(i, j) + w*anna_evecs(i, k)*anna_evecs(j, k)
267 END DO
268 END DO
269 END DO
270
271 !B = 1/S * A * 1/(A^T 1/S A)
272 block_b = matmul(matmul(nn, block_a), anna_inv)
273
274 ! TURNING POINT (if calc grad) ------------------------------------------
275 IF (gradient) THEN
276 CALL dbcsr_get_block_p(matrix=matrix_g_nondiag, row=iatom, col=iatom, block=block_g, found=found)
277 cpassert(ASSOCIATED(block_g))
278 CALL dbcsr_get_block_p(matrix=matrix_ma, row=iatom, col=iatom, block=block_ma, found=found)
279 CALL dbcsr_get_block_p(matrix=matrix_mb, row=iatom, col=iatom, block=block_mb, found=found)
280 ! don't check ASSOCIATED(block_M), it might have been filtered out.
281
282 ALLOCATE (g(n, m))
283 g(:, :) = 0.0_dp
284
285 IF (PRESENT(penalty)) THEN
286 DO i = 1, m
287 w = 1.0_dp - sum(block_a(:, i)**2)
288 g(:, i) = -4.0_dp*pao%penalty_strength*w*block_a(:, i)
289 END DO
290 END IF
291
292 IF (ASSOCIATED(block_ma)) THEN
293 g = g + block_ma
294 END IF
295
296 IF (ASSOCIATED(block_mb)) THEN
297 g = g + matmul(matmul(nn, block_mb), anna_inv)
298
299 ! calculate derivatives dAA_inv/ dAA
300 ALLOCATE (d(m, m), m1(m, m), m2(m, m), m3(m, m), m4(m, m), m5(m, m))
301
302 DO i = 1, m
303 DO j = 1, m
304 denom = anna_evals(i) - anna_evals(j)
305 IF (i == j) THEN
306 d(i, i) = -1.0_dp/anna_evals(i)**2 ! diagonal elements
307 ELSE IF (abs(denom) > 1e-10_dp) THEN
308 d(i, j) = (1.0_dp/anna_evals(i) - 1.0_dp/anna_evals(j))/denom
309 ELSE
310 d(i, j) = -1.0_dp ! limit according to L'Hospital's rule
311 END IF
312 END DO
313 END DO
314
315 m1 = matmul(matmul(transpose(block_a), nn), block_mb)
316 m2 = matmul(matmul(transpose(anna_evecs), m1), anna_evecs)
317 m3 = m2*d ! Hadamard product
318 m4 = matmul(matmul(anna_evecs, m3), transpose(anna_evecs))
319 m5 = 0.5_dp*(m4 + transpose(m4))
320 g = g + 2.0_dp*matmul(matmul(nn, block_a), m5)
321
322 DEALLOCATE (d, m1, m2, m3, m4, m5)
323 END IF
324
325 block_g = reshape(g, (/n*m, 1/))
326 DEALLOCATE (g)
327 END IF
328
329 DEALLOCATE (nn, anna, anna_evecs, anna_evals, anna_inv)
330 END DO
331 CALL dbcsr_iterator_stop(iter)
332!$OMP END PARALLEL
333
334 ! sum penalty energies across ranks
335 IF (PRESENT(penalty)) THEN
336 CALL dbcsr_get_info(pao%matrix_X, group=group_handle)
337 CALL group%set_handle(group_handle)
338 CALL group%sum(penalty)
339 END IF
340
341 CALL dbcsr_release(matrix_x_nondiag)
342
343 IF (gradient) THEN
344 CALL dbcsr_complete_redistribute(matrix_g_nondiag, pao%matrix_G)
345 CALL dbcsr_release(matrix_g_nondiag)
346 CALL dbcsr_release(matrix_ma)
347 CALL dbcsr_release(matrix_mb)
348 END IF
349
350 CALL timestop(handle)
351
352 END SUBROUTINE pao_calc_ab_equi
353
354END MODULE pao_param_equi
Types needed for a linear scaling quickstep SCF run based on the density matrix.
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
Collection of simple mathematical functions and subroutines.
Definition mathlib.F:15
subroutine, public diamat_all(a, eigval, dac)
Diagonalize the symmetric n by n matrix a using the LAPACK library. Only the upper triangle of matrix...
Definition mathlib.F:372
Interface to the message passing library MPI.
Equivariant parametrization.
subroutine, public pao_param_count_equi(qs_env, ikind, nparams)
Returns the number of parameters for given atomic kind.
subroutine, public pao_param_finalize_equi()
Finalize equivariant parametrization.
subroutine, public pao_param_initguess_equi(pao, qs_env)
Fills matrix_X with an initial guess.
subroutine, public pao_param_init_equi(pao)
Initialize equivariant parametrization.
subroutine, public pao_calc_ab_equi(pao, qs_env, ls_scf_env, gradient, penalty)
Takes current matrix_X and calculates the matrices A and B.
Common routines for PAO parametrizations.
subroutine, public pao_calc_grad_lnv_wrt_ab(qs_env, ls_scf_env, matrix_ma, matrix_mb)
Helper routine, calculates partial derivative dE/dA and dE/dB. As energy functional serves the defini...
Factory routines for potentials used e.g. by pao_param_exp and pao_ml.
subroutine, public pao_guess_initial_potential(qs_env, iatom, block_v)
Makes an educated guess for the initial potential based on positions of neighboring atoms.
Types used by the PAO machinery.
Definition pao_types.F:12
subroutine, public get_qs_env(qs_env, atomic_kind_set, qs_kind_set, cell, super_cell, cell_ref, use_ref_cell, kpoints, dft_control, mos, sab_orb, sab_all, qmmm, qmmm_periodic, sac_ae, sac_ppl, sac_lri, sap_ppnl, sab_vdw, sab_scp, sap_oce, sab_lrc, sab_se, sab_xtbe, sab_tbe, sab_core, sab_xb, sab_xtb_nonbond, sab_almo, sab_kp, sab_kp_nosym, particle_set, energy, force, matrix_h, matrix_h_im, matrix_ks, matrix_ks_im, matrix_vxc, run_rtp, rtp, matrix_h_kp, matrix_h_im_kp, matrix_ks_kp, matrix_ks_im_kp, matrix_vxc_kp, kinetic_kp, matrix_s_kp, matrix_w_kp, matrix_s_ri_aux_kp, matrix_s, matrix_s_ri_aux, matrix_w, matrix_p_mp2, matrix_p_mp2_admm, rho, rho_xc, pw_env, ewald_env, ewald_pw, active_space, mpools, input, para_env, blacs_env, scf_control, rel_control, kinetic, qs_charges, vppl, rho_core, rho_nlcc, rho_nlcc_g, ks_env, ks_qmmm_env, wf_history, scf_env, local_particles, local_molecules, distribution_2d, dbcsr_dist, molecule_kind_set, molecule_set, subsys, cp_subsys, oce, local_rho_set, rho_atom_set, task_list, task_list_soft, rho0_atom_set, rho0_mpole, rhoz_set, ecoul_1c, rho0_s_rs, rho0_s_gs, do_kpoints, has_unit_metric, requires_mo_derivs, mo_derivs, mo_loc_history, nkind, natom, nelectron_total, nelectron_spin, efield, neighbor_list_id, linres_control, xas_env, virial, cp_ddapc_env, cp_ddapc_ewald, outer_scf_history, outer_scf_ihistory, x_data, et_coupling, dftb_potential, results, se_taper, se_store_int_env, se_nddo_mpole, se_nonbond_env, admm_env, lri_env, lri_density, exstate_env, ec_env, dispersion_env, gcp_env, vee, rho_external, external_vxc, mask, mp2_env, bs_env, kg_env, wanniercentres, atprop, ls_scf_env, do_transport, transport_env, v_hartree_rspace, s_mstruct_changed, rho_changed, potential_changed, forces_up_to_date, mscfg_env, almo_scf_env, gradient_history, variable_history, embed_pot, spin_embed_pot, polar_env, mos_last_converged, rhs)
Get the QUICKSTEP environment.
Define the quickstep kind type and their sub types.
subroutine, public get_qs_kind(qs_kind, basis_set, basis_type, ncgf, nsgf, all_potential, tnadd_potential, gth_potential, sgp_potential, upf_potential, se_parameter, dftb_parameter, xtb_parameter, dftb3_param, zeff, elec_conf, mao, lmax_dftb, alpha_core_charge, ccore_charge, core_charge, core_charge_radius, paw_proj_set, paw_atom, hard_radius, hard0_radius, max_rad_local, covalent_radius, vdw_radius, gpw_r3d_rs_type_forced, harmonics, max_iso_not0, max_s_harm, grid_atom, ngrid_ang, ngrid_rad, lmax_rho0, dft_plus_u_atom, l_of_dft_plus_u, n_of_dft_plus_u, u_minus_j, u_of_dft_plus_u, j_of_dft_plus_u, alpha_of_dft_plus_u, beta_of_dft_plus_u, j0_of_dft_plus_u, occupation_of_dft_plus_u, dispersion, bs_occupation, magnetization, no_optimize, addel, laddel, naddel, orbitals, max_scf, eps_scf, smear, u_ramping, u_minus_j_target, eps_u_ramping, init_u_ramping_each_scf, reltmat, ghost, floating, name, element_symbol, pao_basis_size, pao_potentials, pao_descriptors, nelec)
Get attributes of an atomic kind.
Provides all information about a quickstep kind.