(git:374b731)
Loading...
Searching...
No Matches
dbm_multiply_cpu.c
Go to the documentation of this file.
1/*----------------------------------------------------------------------------*/
2/* CP2K: A general program to perform molecular dynamics simulations */
3/* Copyright 2000-2024 CP2K developers group <https://cp2k.org> */
4/* */
5/* SPDX-License-Identifier: BSD-3-Clause */
6/*----------------------------------------------------------------------------*/
7
8#include <assert.h>
9#include <stddef.h>
10#include <string.h>
11
12#if defined(__LIBXSMM)
13#include <libxsmm.h>
14#if !defined(DBM_LIBXSMM_PREFETCH)
15// #define DBM_LIBXSMM_PREFETCH LIBXSMM_GEMM_PREFETCH_AL2_AHEAD
16#define DBM_LIBXSMM_PREFETCH LIBXSMM_GEMM_PREFETCH_NONE
17#endif
18#if LIBXSMM_VERSION4(1, 17, 0, 3710) > LIBXSMM_VERSION_NUMBER
19#define libxsmm_dispatch_gemm libxsmm_dispatch_gemm_v2
20#endif
21#endif
22
23#include "dbm_hyperparams.h"
24#include "dbm_multiply_cpu.h"
25
26/*******************************************************************************
27 * \brief Prototype for BLAS dgemm.
28 * \author Ole Schuett
29 ******************************************************************************/
30void dgemm_(const char *transa, const char *transb, const int *m, const int *n,
31 const int *k, const double *alpha, const double *a, const int *lda,
32 const double *b, const int *ldb, const double *beta, double *c,
33 const int *ldc);
34
35/*******************************************************************************
36 * \brief Private convenient wrapper to hide Fortran nature of dgemm_.
37 * \author Ole Schuett
38 ******************************************************************************/
39static inline void dbm_dgemm(const char transa, const char transb, const int m,
40 const int n, const int k, const double alpha,
41 const double *a, const int lda, const double *b,
42 const int ldb, const double beta, double *c,
43 const int ldc) {
44
45 dgemm_(&transa, &transb, &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c,
46 &ldc);
47}
48
49/*******************************************************************************
50 * \brief Private hash function based on Szudzik's elegant pairing.
51 * Using unsigned int to return a positive number even after overflow.
52 * https://en.wikipedia.org/wiki/Pairing_function#Other_pairing_functions
53 * https://stackoverflow.com/a/13871379
54 * http://szudzik.com/ElegantPairing.pdf
55 * \author Ole Schuett
56 ******************************************************************************/
57static inline unsigned int hash(const dbm_task_t task) {
58 const unsigned int m = task.m, n = task.n, k = task.k;
59 const unsigned int mn = (m >= n) ? m * m + m + n : m + n * n;
60 const unsigned int mnk = (mn >= k) ? mn * mn + mn + k : mn + k * k;
61 return mnk;
62}
63
64/*******************************************************************************
65 * \brief Internal routine for executing the tasks in given batch on the CPU.
66 * \author Ole Schuett
67 ******************************************************************************/
68void dbm_multiply_cpu_process_batch(const int ntasks, dbm_task_t batch[ntasks],
69 const double alpha,
70 const dbm_pack_t *pack_a,
71 const dbm_pack_t *pack_b,
72 dbm_shard_t *shard_c) {
73
74 if (0 >= ntasks) { // nothing to do
75 return;
76 }
78
79#if defined(__LIBXSMM)
80
81 // Sort tasks approximately by m,n,k via bucket sort.
82 int buckets[BATCH_NUM_BUCKETS];
83 memset(buckets, 0, BATCH_NUM_BUCKETS * sizeof(int));
84 for (int itask = 0; itask < ntasks; ++itask) {
85 const int i = hash(batch[itask]) % BATCH_NUM_BUCKETS;
86 ++buckets[i];
87 }
88 for (int i = 1; i < BATCH_NUM_BUCKETS; ++i) {
89 buckets[i] += buckets[i - 1];
90 }
91 assert(buckets[BATCH_NUM_BUCKETS - 1] == ntasks);
92 int batch_order[ntasks];
93 for (int itask = 0; itask < ntasks; ++itask) {
94 const int i = hash(batch[itask]) % BATCH_NUM_BUCKETS;
95 --buckets[i];
96 batch_order[buckets[i]] = itask;
97 }
98
99 // Prepare arguments for libxsmm's kernel-dispatch.
100 const int flags = LIBXSMM_GEMM_FLAG_TRANS_B; // transa = "N", transb = "T"
101 const int prefetch = DBM_LIBXSMM_PREFETCH;
102 int kernel_m = 0, kernel_n = 0, kernel_k = 0;
103 dbm_task_t task_next = batch[batch_order[0]];
104
105#if (LIBXSMM_GEMM_PREFETCH_NONE != DBM_LIBXSMM_PREFETCH)
106 double *data_a_next = NULL, *data_b_next = NULL, *data_c_next = NULL;
107#endif
108#if LIBXSMM_VERSION2(1, 17) < LIBXSMM_VERSION_NUMBER
109 libxsmm_gemmfunction kernel_func = NULL;
110#else
111 libxsmm_dmmfunction kernel_func = NULL;
112 const double beta = 1.0;
113#endif
114
115 // Loop over tasks.
116 for (int itask = 0; itask < ntasks; ++itask) {
117 const dbm_task_t task = task_next;
118 task_next = batch[batch_order[(itask + 1) < ntasks ? (itask + 1) : itask]];
119
120 if (task.m != kernel_m || task.n != kernel_n || task.k != kernel_k) {
121#if LIBXSMM_VERSION2(1, 17) < LIBXSMM_VERSION_NUMBER
122 const libxsmm_gemm_shape shape = libxsmm_create_gemm_shape(
123 task.m, task.n, task.k, task.m /*lda*/, task.n /*ldb/transb*/,
124 task.m /*ldc*/, LIBXSMM_DATATYPE_F64 /*aprec*/,
125 LIBXSMM_DATATYPE_F64 /*bprec*/, LIBXSMM_DATATYPE_F64 /*cprec*/,
126 LIBXSMM_DATATYPE_F64 /*calcp*/);
127 kernel_func = (LIBXSMM_FEQ(1.0, alpha)
128 ? libxsmm_dispatch_gemm(shape, (libxsmm_bitfield)flags,
129 (libxsmm_bitfield)prefetch)
130 : NULL);
131#else
132 kernel_func = libxsmm_dmmdispatch(task.m, task.n, task.k, NULL /*lda*/,
133 NULL /*ldb*/, NULL /*ldc*/, &alpha,
134 &beta, &flags, &prefetch);
135#endif
136 kernel_m = task.m;
137 kernel_n = task.n;
138 kernel_k = task.k;
139 }
140
141 // gemm_param wants non-const data even for A and B
142 double *const data_a = pack_a->data + task.offset_a;
143 double *const data_b = pack_b->data + task.offset_b;
144 double *const data_c = shard_c->data + task.offset_c;
145
146 if (kernel_func != NULL) {
147#if LIBXSMM_VERSION2(1, 17) < LIBXSMM_VERSION_NUMBER
148 libxsmm_gemm_param gemm_param;
149 gemm_param.a.primary = data_a;
150 gemm_param.b.primary = data_b;
151 gemm_param.c.primary = data_c;
152#if (LIBXSMM_GEMM_PREFETCH_NONE != DBM_LIBXSMM_PREFETCH)
153 gemm_param.a.quaternary = pack_a->data + task_next.offset_a;
154 gemm_param.b.quaternary = pack_b->data + task_next.offset_b;
155 gemm_param.c.quaternary = shard_c->data + task_next.offset_c;
156#endif
157 kernel_func(&gemm_param);
158#elif (LIBXSMM_GEMM_PREFETCH_NONE != DBM_LIBXSMM_PREFETCH)
159 kernel_func(data_a, data_b, data_c, pack_a->data + task_next.offset_a,
160 pack_b->data + task_next.offset_b,
161 shard_c->data + task_next.offset_c);
162#else
163 kernel_func(data_a, data_b, data_c);
164#endif
165 } else {
166 dbm_dgemm('N', 'T', task.m, task.n, task.k, alpha, data_a, task.m, data_b,
167 task.n, 1.0, data_c, task.m);
168 }
169 }
170#else
171 // Fallback to BLAS when libxsmm is not available.
172 for (int itask = 0; itask < ntasks; ++itask) {
173 const dbm_task_t task = batch[itask];
174 const double *data_a = &pack_a->data[task.offset_a];
175 const double *data_b = &pack_b->data[task.offset_b];
176 double *data_c = &shard_c->data[task.offset_c];
177 dbm_dgemm('N', 'T', task.m, task.n, task.k, alpha, data_a, task.m, data_b,
178 task.n, 1.0, data_c, task.m);
179 }
180#endif
181}
182
183// EOF
static const int BATCH_NUM_BUCKETS
static void dbm_dgemm(const char transa, const char transb, const int m, const int n, const int k, const double alpha, const double *a, const int lda, const double *b, const int ldb, const double beta, double *c, const int ldc)
Private convenient wrapper to hide Fortran nature of dgemm_.
static unsigned int hash(const dbm_task_t task)
Private hash function based on Szudzik's elegant pairing. Using unsigned int to return a positive num...
void dgemm_(const char *transa, const char *transb, const int *m, const int *n, const int *k, const double *alpha, const double *a, const int *lda, const double *b, const int *ldb, const double *beta, double *c, const int *ldc)
Prototype for BLAS dgemm.
void dbm_multiply_cpu_process_batch(const int ntasks, dbm_task_t batch[ntasks], const double alpha, const dbm_pack_t *pack_a, const dbm_pack_t *pack_b, dbm_shard_t *shard_c)
Internal routine for executing the tasks in given batch on the CPU.
void dbm_shard_allocate_promised_blocks(dbm_shard_t *shard)
Internal routine for allocating and zeroing any promised block's data.
Definition dbm_shard.c:203
static void const int const int i
Internal struct for storing a pack - essentially a shard for MPI.
Internal struct for storing a matrix shard.
Definition dbm_shard.h:30
double * data
Definition dbm_shard.h:44
Internal struct for storing a task, ie. a single block multiplication.