![]() |
(git:4e96ea1)
|
Calculation of contracted, spherical Gaussian integrals using the solid harmonic Gaussian (SHG) integral scheme. Routines for the following two-center integrals: i) (a|O(r12)|b) where O(r12) is the overlap, coulomb operator etc. ii) (aba) and (abb) s-overlaps. More...
Functions/Subroutines | |
| subroutine, public | int_operators_r12_ab_shg (r12_operator, vab, dvab, rab, fba, fbb, scona_shg, sconb_shg, omega, calculate_forces) |
| Calcululates the two-center integrals of the type (a|O(r12)|b) using the SHG scheme. | |
| subroutine, public | int_overlap_ab_shg (vab, dvab, rab, fba, fbb, scona_shg, sconb_shg, calculate_forces) |
| calculate overlap integrals (a,b) | |
| subroutine, public | int_ra2m_ab_shg (vab, dvab, rab, fba, fbb, scon_ra2m, sconb_shg, m, calculate_forces) |
| Calcululates the two-center integrals of the type (a|(r-Ra)^(2m)|b) using the SHG scheme. | |
| subroutine, public | int_overlap_aba_shg (saba, dsaba, rab, oba, obb, fba, scon_obb, scona_mix, oba_index, fba_index, cg_coeff, cg_none0_list, ncg_none0, calculate_forces) |
| calculate integrals (a,b,fa) | |
| subroutine, public | int_overlap_abb_shg (sabb, dsabb, rab, oba, obb, fbb, scon_oba, sconb_mix, obb_index, fbb_index, cg_coeff, cg_none0_list, ncg_none0, calculate_forces) |
| calculate integrals (a,b,fb) | |
| subroutine, public | int_overlap_ab_shg_low (sab, dsab, rab, fba, fbb, scona_shg, sconb_shg, waux_mat, dwaux_mat, calculate_ints, calculate_forces, contraction_high) |
| calculate overlap integrals (a,b); requires angular-dependent part as input | |
| subroutine, public | int_ra2m_ab_shg_low (vab, dvab, rab, fba, fbb, sconb_shg, scon_ra2m, m, waux_mat, dwaux_mat, calculate_forces) |
| calculate integrals (a|ra^2m)|b); requires angular-dependent part as input | |
| subroutine, public | int_overlap_abb_shg_low (abbint, dabbint, rab, oba, obb, fbb, scon_oba, sconb_mix, obb_index, fbb_index, cg_coeff, cg_none0_list, ncg_none0, waux_mat, dwaux_mat, calculate_ints, calculate_forces) |
| calculate integrals (a,b,fb); requires angular-dependent part as input | |
| subroutine, public | get_abb_same_kind (abbint, dabbint, abaint, dabdaint, rab, oba, fba, calculate_ints, calculate_forces) |
| obtain integrals (a,b,fb) by symmetry relations from (a,b,fa) if basis sets at a and b are of the same kind, i.e. a and b are same atom type | |
| subroutine, public | int_overlap_aba_shg_low (abaint, dabdaint, rab, oba, obb, fba, scon_obb, scona_mix, oba_index, fba_index, cg_coeff, cg_none0_list, ncg_none0, waux_mat, dwaux_mat, calculate_ints, calculate_forces) |
| calculate integrals (a,b,fa); requires angular-dependent part as input | |
| subroutine, public | lri_precalc_angular_shg_part (oba, obb, fba, fbb, rab, waux_mat, dwaux_mat, calculate_forces) |
| precalculates the angular part of the SHG integrals for the matrices (fa,fb), (a,b), (a,b,fa) and (b,fb,a); the same Waux_mat can then be used for all for integrals; specific for LRIGPW | |
Calculation of contracted, spherical Gaussian integrals using the solid harmonic Gaussian (SHG) integral scheme. Routines for the following two-center integrals: i) (a|O(r12)|b) where O(r12) is the overlap, coulomb operator etc. ii) (aba) and (abb) s-overlaps.
| subroutine, public generic_shg_integrals::int_operators_r12_ab_shg | ( | integer, intent(in) | r12_operator, |
| real(kind=dp), dimension(:, :), intent(inout) | vab, | ||
| real(kind=dp), dimension(:, :, :), intent(inout), optional | dvab, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), pointer | scona_shg, | ||
| real(kind=dp), dimension(:, :, :), pointer | sconb_shg, | ||
| real(kind=dp), intent(in), optional | omega, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
Calcululates the two-center integrals of the type (a|O(r12)|b) using the SHG scheme.
| r12_operator | the integral operator, which depends on r12=|r1-r2| |
| vab | integral matrix of spherical contracted Gaussian functions |
| dvab | derivative of the integrals |
| rab | distance vector between center A and B |
| fba | basis at center A |
| fbb | basis at center B |
| scona_shg | SHG contraction matrix for A |
| sconb_shg | SHG contraction matrix for B |
| omega | parameter in the operator |
| calculate_forces | ... |
Definition at line 98 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_ab_shg | ( | real(kind=dp), dimension(:, :), intent(inout), allocatable | vab, |
| real(kind=dp), dimension(:, :, :), intent(inout), allocatable | dvab, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scona_shg, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | sconb_shg, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate overlap integrals (a,b)
| vab | integral (a,b) |
| dvab | derivative of sab |
| rab | distance vector |
| fba | basis at center A |
| fbb | basis at center B |
| scona_shg | contraction matrix A |
| sconb_shg | contraxtion matrix B |
| calculate_forces | ... |
Definition at line 163 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_ra2m_ab_shg | ( | real(kind=dp), dimension(:, :), intent(inout) | vab, |
| real(kind=dp), dimension(:, :, :), intent(inout) | dvab, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | scon_ra2m, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | sconb_shg, | ||
| integer, intent(in) | m, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
Calcululates the two-center integrals of the type (a|(r-Ra)^(2m)|b) using the SHG scheme.
| vab | integral matrix of spherical contracted Gaussian functions |
| dvab | derivative of the integrals |
| rab | distance vector between center A and B |
| fba | basis at center A |
| fbb | basis at center B |
| scon_ra2m | contraction matrix for A including the combinatorial factors |
| sconb_shg | SHG contraction matrix for B |
| m | exponent in (r-Ra)^(2m) operator |
| calculate_forces | ... |
Definition at line 203 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_aba_shg | ( | real(kind=dp), dimension(:, :, :), intent(inout), allocatable | saba, |
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dsaba, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | oba, | ||
| type(gto_basis_set_type), pointer | obb, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scon_obb, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | scona_mix, | ||
| integer, dimension(:, :, :), intent(in) | oba_index, | ||
| integer, dimension(:, :, :), intent(in) | fba_index, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | cg_coeff, | ||
| integer, dimension(:, :, :), intent(in) | cg_none0_list, | ||
| integer, dimension(:, :), intent(in) | ncg_none0, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate integrals (a,b,fa)
| saba | integral [aba] |
| dsaba | derivative of [aba] |
| rab | distance vector between A and B |
| oba | orbital basis at center A |
| obb | orbital basis at center B |
| fba | auxiliary basis set at center A |
| scon_obb | contraction matrix for orb bas on B |
| scona_mix | mixed contraction matrix orb + ri basis on A |
| oba_index | orbital basis index for scona_mix |
| fba_index | ri basis index for scona_mix |
| cg_coeff | Clebsch-Gordon coefficients |
| cg_none0_list | list of none-zero Clebsch-Gordon coefficients |
| ncg_none0 | number of non-zero Clebsch-Gordon coefficients |
| calculate_forces | ... |
Definition at line 247 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_abb_shg | ( | real(kind=dp), dimension(:, :, :), intent(inout), allocatable | sabb, |
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dsabb, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | oba, | ||
| type(gto_basis_set_type), pointer | obb, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scon_oba, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | sconb_mix, | ||
| integer, dimension(:, :, :), intent(in) | obb_index, | ||
| integer, dimension(:, :, :), intent(in) | fbb_index, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | cg_coeff, | ||
| integer, dimension(:, :, :), intent(in) | cg_none0_list, | ||
| integer, dimension(:, :), intent(in) | ncg_none0, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate integrals (a,b,fb)
| sabb | integral [abb] |
| dsabb | derivative of [abb] |
| rab | distance vector between A and B |
| oba | orbital basis at center A |
| obb | orbital basis at center B |
| fbb | auxiliary basis set at center B |
| scon_oba | contraction matrix for orb bas on A |
| sconb_mix | mixed contraction matrix orb + ri basis on B |
| obb_index | orbital basis index for sconb_mix |
| fbb_index | ri basis index for sconb_mix |
| cg_coeff | Clebsch-Gordon coefficients |
| cg_none0_list | list of none-zero Clebsch-Gordon coefficients |
| ncg_none0 | number of non-zero Clebsch-Gordon coefficients |
| calculate_forces | ... |
Definition at line 303 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_ab_shg_low | ( | real(kind=dp), dimension(:, :), intent(inout), allocatable | sab, |
| real(kind=dp), dimension(:, :, :), intent(inout), allocatable | dsab, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scona_shg, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | sconb_shg, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | waux_mat, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | dwaux_mat, | ||
| logical, intent(in) | calculate_ints, | ||
| logical, intent(in) | calculate_forces, | ||
| logical, intent(in), optional | contraction_high | ||
| ) |
calculate overlap integrals (a,b); requires angular-dependent part as input
| sab | integral (a,b) |
| dsab | derivative of sab |
| rab | distance vector |
| fba | basis at center A |
| fbb | basis at center B |
| scona_shg | contraction matrix A |
| sconb_shg | contraxtion matrix B |
| Waux_mat | W matrix that contains the angular-dependent part |
| dWaux_mat | derivative of the W matrix |
| calculate_ints | ... |
| calculate_forces | ... |
| contraction_high | ... |
Definition at line 524 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_ra2m_ab_shg_low | ( | real(kind=dp), dimension(:, :), intent(inout) | vab, |
| real(kind=dp), dimension(:, :, :), intent(inout) | dvab, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | sconb_shg, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | scon_ra2m, | ||
| integer, intent(in) | m, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | waux_mat, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | dwaux_mat, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate integrals (a|ra^2m)|b); requires angular-dependent part as input
| vab | integral matrix of spherical contracted Gaussian functions |
| dvab | derivative of the integrals |
| rab | distance vector between center A and B |
| fba | basis at center A |
| fbb | basis at center B |
| sconb_shg | SHG contraction matrix for B |
| scon_ra2m | contraction matrix for A including the combinatorial factors |
| m | exponent in (r-Ra)^(2m) operator |
| Waux_mat | W matrix that contains the angular-dependent part |
| dWaux_mat | derivative of the W matrix |
| calculate_forces | ... |
Definition at line 652 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_abb_shg_low | ( | real(kind=dp), dimension(:, :, :), intent(inout), allocatable | abbint, |
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dabbint, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | oba, | ||
| type(gto_basis_set_type), pointer | obb, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scon_oba, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | sconb_mix, | ||
| integer, dimension(:, :, :), intent(in) | obb_index, | ||
| integer, dimension(:, :, :), intent(in) | fbb_index, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | cg_coeff, | ||
| integer, dimension(:, :, :), intent(in) | cg_none0_list, | ||
| integer, dimension(:, :), intent(in) | ncg_none0, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | waux_mat, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | dwaux_mat, | ||
| logical, intent(in) | calculate_ints, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate integrals (a,b,fb); requires angular-dependent part as input
| abbint | integral (a,b,fb) |
| dabbint | derivative of abbint |
| rab | distance vector between A and B |
| oba | orbital basis at center A |
| obb | orbital basis at center B |
| fbb | auxiliary basis set at center B |
| scon_oba | contraction matrix for orb bas on A |
| sconb_mix | mixed contraction matrix orb + ri basis on B |
| obb_index | orbital basis index for sconb_mix |
| fbb_index | ri basis index for sconb_mix |
| cg_coeff | Clebsch-Gordon coefficients |
| cg_none0_list | list of none-zero Clebsch-Gordon coefficients |
| ncg_none0 | number of non-zero Clebsch-Gordon coefficients |
| Waux_mat | W matrix that contains the angular-dependent part |
| dWaux_mat | derivative of the W matrix |
| calculate_ints | ... |
| calculate_forces | ... |
Definition at line 769 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::get_abb_same_kind | ( | real(kind=dp), dimension(:, :, :), intent(inout), allocatable | abbint, |
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dabbint, | ||
| real(kind=dp), dimension(:, :, :), intent(inout), allocatable | abaint, | ||
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dabdaint, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | oba, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| logical, intent(in) | calculate_ints, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
obtain integrals (a,b,fb) by symmetry relations from (a,b,fa) if basis sets at a and b are of the same kind, i.e. a and b are same atom type
| abbint | integral (a,b,fb) |
| dabbint | derivative of abbint |
| abaint | integral (a,b,fa) |
| dabdaint | derivative of abaint |
| rab | distance vector between A and B |
| oba | orbital basis at center A |
| fba | auxiliary basis set at center A |
| calculate_ints | ... |
| calculate_forces | ... |
Definition at line 933 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::int_overlap_aba_shg_low | ( | real(kind=dp), dimension(:, :, :), intent(inout), allocatable | abaint, |
| real(kind=dp), dimension(:, :, :, :), intent(inout), allocatable | dabdaint, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| type(gto_basis_set_type), pointer | oba, | ||
| type(gto_basis_set_type), pointer | obb, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | scon_obb, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | scona_mix, | ||
| integer, dimension(:, :, :), intent(in) | oba_index, | ||
| integer, dimension(:, :, :), intent(in) | fba_index, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | cg_coeff, | ||
| integer, dimension(:, :, :), intent(in) | cg_none0_list, | ||
| integer, dimension(:, :), intent(in) | ncg_none0, | ||
| real(kind=dp), dimension(:, :, :), intent(in) | waux_mat, | ||
| real(kind=dp), dimension(:, :, :, :), intent(in) | dwaux_mat, | ||
| logical, intent(in) | calculate_ints, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
calculate integrals (a,b,fa); requires angular-dependent part as input
| abaint | integral (a,b,fa) |
| dabdaint | ... |
| rab | distance vector between A and B |
| oba | orbital basis at center A |
| obb | orbital basis at center B |
| fba | auxiliary basis set at center A |
| scon_obb | contraction matrix for orb bas on B |
| scona_mix | mixed contraction matrix orb + ri basis on A |
| oba_index | orbital basis index for scona_mix |
| fba_index | ri basis index for scona_mix |
| cg_coeff | Clebsch-Gordon coefficients |
| cg_none0_list | list of none-zero Clebsch-Gordon coefficients |
| ncg_none0 | number of non-zero Clebsch-Gordon coefficients |
| Waux_mat | W matrix that contains the angular-dependent part |
| dWaux_mat | derivative of the W matrix |
| calculate_ints | ... |
| calculate_forces | ... |
Definition at line 1075 of file generic_shg_integrals.F.
| subroutine, public generic_shg_integrals::lri_precalc_angular_shg_part | ( | type(gto_basis_set_type), pointer | oba, |
| type(gto_basis_set_type), pointer | obb, | ||
| type(gto_basis_set_type), pointer | fba, | ||
| type(gto_basis_set_type), pointer | fbb, | ||
| real(kind=dp), dimension(3), intent(in) | rab, | ||
| real(kind=dp), dimension(:, :, :), intent(out), allocatable | waux_mat, | ||
| real(kind=dp), dimension(:, :, :, :), intent(out), allocatable | dwaux_mat, | ||
| logical, intent(in) | calculate_forces | ||
| ) |
precalculates the angular part of the SHG integrals for the matrices (fa,fb), (a,b), (a,b,fa) and (b,fb,a); the same Waux_mat can then be used for all for integrals; specific for LRIGPW
| oba | orbital basis on a |
| obb | orbital basis on b |
| fba | aux basis on a |
| fbb | aux basis on b |
| rab | distance vector between a and b |
| Waux_mat | W matrix that contains the angular-dependent part |
| dWaux_mat | derivative of the W matrix |
| calculate_forces | ... |
Definition at line 1241 of file generic_shg_integrals.F.