(git:374b731)
Loading...
Searching...
No Matches
atom_basis.F
Go to the documentation of this file.
1!--------------------------------------------------------------------------------------------------!
2! CP2K: A general program to perform molecular dynamics simulations !
3! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4! !
5! SPDX-License-Identifier: GPL-2.0-or-later !
6!--------------------------------------------------------------------------------------------------!
7
9 USE atom_fit, ONLY: atom_fit_basis
10 USE atom_output, ONLY: atom_print_basis,&
14 USE atom_types, ONLY: &
32 USE kinds, ONLY: default_string_length,&
33 dp
34 USE periodic_table, ONLY: nelem,&
35 ptable
36#include "./base/base_uses.f90"
37
38 IMPLICIT NONE
39 PRIVATE
40 PUBLIC :: atom_basis_opt
41
42 CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_basis'
43
44CONTAINS
45
46! **************************************************************************************************
47!> \brief Optimize the atomic basis set.
48!> \param atom_section ATOM input section
49!> \par History
50!> * 04.2009 created starting from the subroutine atom_energy() [Juerg Hutter]
51! **************************************************************************************************
52 SUBROUTINE atom_basis_opt(atom_section)
53 TYPE(section_vals_type), POINTER :: atom_section
54
55 CHARACTER(len=*), PARAMETER :: routinen = 'atom_basis_opt'
56
57 CHARACTER(LEN=2) :: elem
58 CHARACTER(LEN=default_string_length), &
59 DIMENSION(:), POINTER :: tmpstringlist
60 INTEGER :: do_eric, do_erie, handle, i, im, in, &
61 iunit, iw, k, maxl, mb, method, mo, &
62 n_meth, n_rep, nr_gh, reltyp, zcore, &
63 zval, zz
64 INTEGER, DIMENSION(0:lmat) :: maxn
65 INTEGER, DIMENSION(:), POINTER :: cn
66 LOGICAL :: do_gh, eri_c, eri_e, had_ae, had_pp, &
67 pp_calc
68 REAL(kind=dp), DIMENSION(0:lmat, 10) :: pocc
69 TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
70 TYPE(atom_integrals), POINTER :: ae_int, pp_int
71 TYPE(atom_optimization_type) :: optimization
72 TYPE(atom_orbitals), POINTER :: orbitals
73 TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info
74 TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
75 TYPE(atom_state), POINTER :: state
76 TYPE(cp_logger_type), POINTER :: logger
77 TYPE(section_vals_type), POINTER :: basis_section, method_section, &
78 opt_section, potential_section, &
79 powell_section, xc_section
80
81 CALL timeset(routinen, handle)
82
83 ! What atom do we calculate
84 CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
85 CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
86 zz = 0
87 DO i = 1, nelem
88 IF (ptable(i)%symbol == elem) THEN
89 zz = i
90 EXIT
91 END IF
92 END DO
93 IF (zz /= 1) zval = zz
94
95 ! read and set up inofrmation on the basis sets
96 ALLOCATE (ae_basis, pp_basis)
97 basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
98 NULLIFY (ae_basis%grid)
99 CALL init_atom_basis(ae_basis, basis_section, zval, "AE")
100 NULLIFY (pp_basis%grid)
101 basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
102 CALL init_atom_basis(pp_basis, basis_section, zval, "PP")
103
104 ! print general and basis set information
105 logger => cp_get_default_logger()
106 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
107 IF (iw > 0) CALL atom_print_info(zval, "Atomic Basis Optimization", iw)
108 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
109
110 ! read and setup information on the pseudopotential
111 NULLIFY (potential_section)
112 potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
113 ALLOCATE (ae_pot, p_pot)
114 CALL init_atom_potential(p_pot, potential_section, zval)
115 CALL init_atom_potential(ae_pot, potential_section, -1)
116
117 ! if the ERI's are calculated analytically, we have to precalculate them
118 eri_c = .false.
119 CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
120 IF (do_eric == do_analytic) eri_c = .true.
121 eri_e = .false.
122 CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
123 IF (do_erie == do_analytic) eri_e = .true.
124 CALL section_vals_val_get(atom_section, "USE_GAUSS_HERMITE", l_val=do_gh)
125 CALL section_vals_val_get(atom_section, "GRID_POINTS_GH", i_val=nr_gh)
126
127 ! information on the states to be calculated
128 CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
129 maxn = 0
130 CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
131 DO in = 1, min(SIZE(cn), 4)
132 maxn(in - 1) = cn(in)
133 END DO
134 DO in = 0, lmat
135 maxn(in) = min(maxn(in), ae_basis%nbas(in))
136 maxn(in) = min(maxn(in), pp_basis%nbas(in))
137 END DO
138
139 ! read optimization section
140 opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
141 CALL read_atom_opt_section(optimization, opt_section)
142
143 had_ae = .false.
144 had_pp = .false.
145
146 ! Check for the total number of electron configurations to be calculated
147 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
148 ! Check for the total number of method types to be calculated
149 method_section => section_vals_get_subs_vals(atom_section, "METHOD")
150 CALL section_vals_get(method_section, n_repetition=n_meth)
151
152 ! integrals
153 ALLOCATE (ae_int, pp_int)
154
155 ALLOCATE (atom_info(n_rep, n_meth))
156
157 DO in = 1, n_rep
158 DO im = 1, n_meth
159
160 NULLIFY (atom_info(in, im)%atom)
161 CALL create_atom_type(atom_info(in, im)%atom)
162
163 atom_info(in, im)%atom%optimization = optimization
164
165 atom_info(in, im)%atom%z = zval
166 xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
167 atom_info(in, im)%atom%xc_section => xc_section
168
169 ALLOCATE (state)
170
171 ! get the electronic configuration
172 CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
173 c_vals=tmpstringlist)
174
175 ! set occupations
176 CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
177 state%maxl_occ = get_maxl_occ(state%occ)
178 state%maxn_occ = get_maxn_occ(state%occ)
179
180 ! set number of states to be calculated
181 state%maxl_calc = max(maxl, state%maxl_occ)
182 state%maxl_calc = min(lmat, state%maxl_calc)
183 state%maxn_calc = 0
184 DO k = 0, state%maxl_calc
185 state%maxn_calc(k) = max(maxn(k), state%maxn_occ(k))
186 END DO
187
188 ! is there a pseudo potential
189 pp_calc = any(index(tmpstringlist(1:), "CORE") /= 0)
190 IF (pp_calc) THEN
191 ! get and set the core occupations
192 CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
193 CALL atom_set_occupation(tmpstringlist, state%core, pocc)
194 zcore = zval - nint(sum(state%core))
195 CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.true.)
196 had_pp = .true.
197 CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, potential=p_pot)
198 state%maxn_calc(:) = min(state%maxn_calc(:), pp_basis%nbas(:))
199 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
200 ELSE
201 state%core = 0._dp
202 CALL set_atom(atom_info(in, im)%atom, zcore=zval, pp_calc=.false.)
203 had_ae = .true.
204 CALL set_atom(atom_info(in, im)%atom, basis=ae_basis, potential=ae_pot)
205 state%maxn_calc(:) = min(state%maxn_calc(:), ae_basis%nbas(:))
206 cpassert(all(state%maxn_calc(:) >= state%maxn_occ))
207 END IF
208
209 CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_val=im)
210 CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
211 CALL set_atom(atom_info(in, im)%atom, method_type=method, relativistic=reltyp)
212 CALL set_atom(atom_info(in, im)%atom, state=state)
213 CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
214 exchange_integral_type=do_erie)
215 atom_info(in, im)%atom%hfx_pot%do_gh = do_gh
216 atom_info(in, im)%atom%hfx_pot%nr_gh = nr_gh
217
218 IF (atom_consistent_method(method, state%multiplicity)) THEN
219 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
220 CALL atom_print_method(atom_info(in, im)%atom, iw)
221 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
222 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
223 IF (pp_calc) THEN
224 IF (iw > 0) CALL atom_print_potential(p_pot, iw)
225 ELSE
226 IF (iw > 0) CALL atom_print_potential(ae_pot, iw)
227 END IF
228 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
229 ELSE
230 cpabort("METHOD_TYPE and MULTIPLICITY are incompatible")
231 END IF
232
233 NULLIFY (orbitals)
234 mo = maxval(state%maxn_calc)
235 mb = maxval(atom_info(in, im)%atom%basis%nbas)
236 CALL create_atom_orbs(orbitals, mb, mo)
237 CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
238
239 END DO
240 END DO
241
242 ! Start the Optimization
243 powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
244 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
245 iunit = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_BASIS", extension=".log")
246 IF (had_ae) THEN
247 pp_calc = .false.
248 CALL atom_fit_basis(atom_info, ae_basis, pp_calc, iunit, powell_section)
249 END IF
250 IF (had_pp) THEN
251 pp_calc = .true.
252 CALL atom_fit_basis(atom_info, pp_basis, pp_calc, iunit, powell_section)
253 END IF
254 CALL cp_print_key_finished_output(iunit, logger, atom_section, "PRINT%FIT_BASIS")
255 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
256 iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
257 IF (iw > 0) THEN
258 CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
259 CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
260 END IF
261 CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
262
263 CALL release_atom_basis(ae_basis)
264 CALL release_atom_basis(pp_basis)
265
266 CALL release_atom_potential(p_pot)
267 CALL release_atom_potential(ae_pot)
268
269 DO in = 1, n_rep
270 DO im = 1, n_meth
271 CALL release_atom_type(atom_info(in, im)%atom)
272 END DO
273 END DO
274 DEALLOCATE (atom_info)
275
276 DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
277
278 CALL timestop(handle)
279
280 END SUBROUTINE atom_basis_opt
281
282END MODULE atom_basis
subroutine, public atom_basis_opt(atom_section)
Optimize the atomic basis set.
Definition atom_basis.F:53
routines that fit parameters for /from atomic calculations
Definition atom_fit.F:11
subroutine, public atom_fit_basis(atom_info, basis, pptype, iunit, powell_section)
...
Definition atom_fit.F:175
Routines that print various information about an atomic kind.
Definition atom_output.F:11
subroutine, public atom_print_basis(atom_basis, iw, title)
Print atomic basis set.
subroutine, public atom_print_method(atom, iw)
Print information about the electronic structure method in use.
subroutine, public atom_print_potential(potential, iw)
Print information about the pseudo-potential.
subroutine, public atom_print_info(zval, info, iw)
Print an information string related to the atomic kind.
Definition atom_output.F:64
Define the atom type and its sub types.
Definition atom_types.F:15
subroutine, public read_atom_opt_section(optimization, opt_section)
...
subroutine, public create_atom_type(atom)
...
Definition atom_types.F:944
subroutine, public release_atom_type(atom)
...
Definition atom_types.F:968
subroutine, public release_atom_potential(potential)
...
subroutine, public init_atom_basis(basis, basis_section, zval, btyp)
Initialize the basis for the atomic code.
Definition atom_types.F:375
integer, parameter, public lmat
Definition atom_types.F:67
subroutine, public set_atom(atom, basis, state, integrals, orbitals, potential, zcore, pp_calc, do_zmp, doread, read_vxc, method_type, relativistic, coulomb_integral_type, exchange_integral_type, fmat)
...
subroutine, public init_atom_potential(potential, potential_section, zval)
...
subroutine, public release_atom_basis(basis)
...
Definition atom_types.F:910
subroutine, public create_atom_orbs(orbs, mbas, mo)
...
Some basic routines for atomic calculations.
Definition atom_utils.F:15
pure logical function, public atom_consistent_method(method, multiplicity)
Check that the atomic multiplicity is consistent with the electronic structure method.
pure integer function, dimension(0:lmat), public get_maxn_occ(occupation)
Return the maximum principal quantum number of occupied orbitals.
Definition atom_utils.F:302
subroutine, public atom_set_occupation(ostring, occupation, wfnocc, multiplicity)
Set occupation of atomic orbitals.
Definition atom_utils.F:104
pure integer function, public get_maxl_occ(occupation)
Return the maximum orbital quantum number of occupied orbitals.
Definition atom_utils.F:282
various routines to log and control the output. The idea is that decisions about where to log should ...
type(cp_logger_type) function, pointer, public cp_get_default_logger()
returns the default logger
routines to handle the output, The idea is to remove the decision of wheter to output and what to out...
integer function, public cp_print_key_unit_nr(logger, basis_section, print_key_path, extension, middle_name, local, log_filename, ignore_should_output, file_form, file_position, file_action, file_status, do_backup, on_file, is_new_file, mpi_io, fout)
...
subroutine, public cp_print_key_finished_output(unit_nr, logger, basis_section, print_key_path, local, ignore_should_output, on_file, mpi_io)
should be called after you finish working with a unit obtained with cp_print_key_unit_nr,...
collects all constants needed in input so that they can be used without circular dependencies
integer, parameter, public do_analytic
objects that represent the structure of input sections and the data contained in an input section
recursive type(section_vals_type) function, pointer, public section_vals_get_subs_vals(section_vals, subsection_name, i_rep_section, can_return_null)
returns the values of the requested subsection
subroutine, public section_vals_get(section_vals, ref_count, n_repetition, n_subs_vals_rep, section, explicit)
returns various attributes about the section_vals
subroutine, public section_vals_val_get(section_vals, keyword_name, i_rep_section, i_rep_val, n_rep_val, val, l_val, i_val, r_val, c_val, l_vals, i_vals, r_vals, c_vals, explicit)
returns the requested value
Defines the basic variable types.
Definition kinds.F:23
integer, parameter, public dp
Definition kinds.F:34
integer, parameter, public default_string_length
Definition kinds.F:57
Periodic Table related data definitions.
type(atom), dimension(0:nelem), public ptable
integer, parameter, public nelem
Provides all information about a basis set.
Definition atom_types.F:78
Information on optimization procedure.
Definition atom_types.F:280
Holds atomic orbitals and energies.
Definition atom_types.F:234
Provides all information on states and occupation.
Definition atom_types.F:195
type of a logger, at the moment it contains just a print level starting at which level it should be l...